4,061 research outputs found

    Variational integrators for degenerate Lagrangians, with application to point vortices

    Get PDF
    We develop discrete mechanics and variational integrators for a class of degenerate Lagrangian systems, and apply these integrators to a system of point vortices. Excellent numerical behavior is observed. A longer term goal is to use these integration methods in the context of control of mechanical systems, such as coordinated groups of underwater vehicles. In fact, numerical evidence given in related problems, such as those in [2] shows that in the presence of external forces, these methods give superior predictions of energy behavior

    Multisymplectic geometry, variational integrators, and nonlinear PDEs

    Full text link
    This paper presents a geometric-variational approach to continuous and discrete mechanics and field theories. Using multisymplectic geometry, we show that the existence of the fundamental geometric structures as well as their preservation along solutions can be obtained directly from the variational principle. In particular, we prove that a unique multisymplectic structure is obtained by taking the derivative of an action function, and use this structure to prove covariant generalizations of conservation of symplecticity and Noether's theorem. Natural discretization schemes for PDEs, which have these important preservation properties, then follow by choosing a discrete action functional. In the case of mechanics, we recover the variational symplectic integrators of Veselov type, while for PDEs we obtain covariant spacetime integrators which conserve the corresponding discrete multisymplectic form as well as the discrete momentum mappings corresponding to symmetries. We show that the usual notion of symplecticity along an infinite-dimensional space of fields can be naturally obtained by making a spacetime split. All of the aspects of our method are demonstrated with a nonlinear sine-Gordon equation, including computational results and a comparison with other discretization schemes.Comment: LaTeX2E, 52 pages, 11 figures, to appear in Comm. Math. Phy

    Application of dynamical systems theory to a very low energy transfer

    Get PDF
    We use lobe dynamics in the restricted three-body problem to design orbits with prescribed itineraries with respect to the resonance regions within a Hill’s region. The application we envision is the design of a low energy trajectory to orbit three of Jupiter’s moons using the patched three-body approximation (P3BA). We introduce the “switching region,” the P3BA analogue to the “sphere of influence.” Numerical results are given for the problem of finding the fastest trajectory from an initial region of phase space (escape orbits from moon A) to a target region (orbits captured by moon B) using small controls

    Design of a Multi-Moon Orbiter

    Get PDF
    The Multi-Moon Orbiter concept is introduced, wherein a single spacecraft orbits several moons of Jupiter, allowing long duration observations. The ΔV requirements for this mission can be low if ballistic captures and resonant gravity assists by Jupiter’s moons are used. For example, using only 22 m/s, a spacecraft initially injected in a jovian orbit can be directed into a capture orbit around Europa, orbiting both Callisto and Ganymede enroute. The time of flight for this preliminary trajectory is four years, but may be reduced by striking a compromise between fuel and time optimization during the inter-moon transfer phases

    Point vortices on the hyperbolic plane

    Full text link
    We investigate some properties of the dynamical system of point vortices on the hyperboloid. This system has noncompact symmetry SL(2, R) and a coadjoint equivariant momentum map J. The relative equilibrium conditions are found and the trajectories of relative equilibria with non-zero momentum value are described. We also provide the classification of relative equilibria and the stability criteria for a number of cases, focusing on N=2, 3. Contrary to the system on the sphere, relative equilibria with non-compact momentum isotropy subgroup are found, and are used to illustrate the different stability types of relative equilibria.Comment: To appear in J. Mathematical Physic

    Binary Asteroid Observation Orbits from a Global Dynamical Perspective

    Get PDF
    We study spacecraft motion near a binary asteroid by means of theoretical and computational tools from geometric mechanics and dynamical systems. We model the system assuming that one of the asteroids is a rigid body (ellipsoid) and the other a sphere. In particular, we are interested in finding periodic and quasi-periodic orbits for the spacecraft near the asteroid pair that are suitable for observations and measurements. First, using reduction theory, we study the full two body problem (gravitational interaction between the ellipsoid and the sphere) and use the energy-momentum method to prove nonlinear stability of certain relative equilibria. This study allows us to construct the restricted full three-body problem (RF3BP) for the spacecraft motion around the binary, assuming that the asteroid pair is in relative equilibrium. Then, we compute the modified Lagrangian fixed points and study their spectral stability. The fixed points of the restricted three-body problem are modified in the RF3BP because one of the primaries is a rigid body and not a point mass. A systematic studydepending on the parameters of the problem is performed in an effort to understand the rigid body effects on the Lagrangian stability regions. Finally, using frequency analysis, we study the global dynamics near these modified Lagrangian points. From this global picture, we are able to identify (almost-) invariant tori in the stability region near the modified Lagrangian points. Quasi-periodic trajectories on these invariant tori are potentially convenient places to park the spacecraft while it is observing the asteroid pair

    Constructing a Low Energy Transfer Between Jovian Moons

    Get PDF
    There has recently been considerable interest in sending a spacecraft to orbit Europa, the smallest of the four Galilean moons of Jupiter. The trajectory design involved in effecting a capture by Europa presents formidable challenges to traditional conic analysis since the regimes of motion involved depend heavily on three-body dynamics. New three-body perspectives are required to design successful and efficient missions which take full advantage of the natural dynamics. Not only does a three-body approach provide low-fuel trajectories, but it also increases the flexibility and versatility of missions. We apply this approach to design a new mission concept wherein a spacecraft "leap-frogs" between moons, orbiting each for a desired duration in a temporary capture orbit. We call this concept the "Petit Grand Tour." For this application, we apply dynamical systems techniques developed in a previous paper to design a Europa capture orbit. We show how it is possible, using a gravitional boost from Ganymede, to go from a jovicentric orbit beyond the orbit of Ganymede to a ballistic capture orbit around Europa. The main new technical result is the employment of dynamical channels in the phase space - tubes in the energy surface which naturally link the vicinity of Ganymede to the vicinity of Europa. The transfer V necessary to jump from one moon to another is less than half that required by a standard Hohmann transfer

    The Hamiltonian structure of a two-dimensional rigid circular cylinder interacting dynamically with N point vortices

    Get PDF
    This paper studies the dynamical fluid plus rigid-body system consisting of a two-dimensional rigid cylinder of general cross-sectional shape interacting with N point vortices. We derive the equations of motion for this system and show that, in particular, if the vortex strengths sum to zero and the rigid-body has a circular shape, the equations are Hamiltonian with respect to a Poisson bracket structure that is the sum of the rigid body Lie–Poisson bracket on Se(2)*, the dual of the Lie algebra of the Euclidean group on the plane, and the canonical Poisson bracket for the dynamics of N point vortices in an unbounded plane. We then use this Hamiltonian structure to study the linear and nonlinear stability of the moving Föppl equilibrium solutions using the energy-Casimir method

    Geometric, Variational Integrators for Computer Animation

    Get PDF
    We present a general-purpose numerical scheme for time integration of Lagrangian dynamical systems—an important computational tool at the core of most physics-based animation techniques. Several features make this particular time integrator highly desirable for computer animation: it numerically preserves important invariants, such as linear and angular momenta; the symplectic nature of the integrator also guarantees a correct energy behavior, even when dissipation and external forces are added; holonomic constraints can also be enforced quite simply; finally, our simple methodology allows for the design of high-order accurate schemes if needed. Two key properties set the method apart from earlier approaches. First, the nonlinear equations that must be solved during an update step are replaced by a minimization of a novel functional, speeding up time stepping by more than a factor of two in practice. Second, the formulation introduces additional variables that provide key flexibility in the implementation of the method. These properties are achieved using a discrete form of a general variational principle called the Pontryagin-Hamilton principle, expressing time integration in a geometric manner. We demonstrate the applicability of our integrators to the simulation of non-linear elasticity with implementation details
    corecore