2,208 research outputs found

    Phosphate solubilizing bacteria from the rhizosphere of Theobroma grandiflorum (Willd. ex Spreng.) Schum. and Bactris gasipaes H.B.K.: potential for plant growth promotion.

    Get PDF
    We have isolated bacteria from the rhizosphere of two perennial crop plants (Bactris gasipaes and Theobroma grandiflorum) growing on the SHIFT experimental site near Manaus

    Radioimmunologische Bestimmung von TSH im Serum

    Get PDF

    Повышение урожайности в АПК с учетом инноваций и других факторов

    Get PDF
    В статье подняты актуальные вопросы продовольственной безопасности страны при существующих санкциях. Трудности импортозамещения рассмотрены в рамках российского агропромышленного комплекса (АПК). Обозначены существующие проблемы в сельскохозяйственном секторе экономике и предложены пути их преодоления. Исследованы направления инноваций в сельском хозяйстве, эффективные технологии в АПК, а также факторы, сдерживающие их внедрение в производство. Даны рекомендации доведения инноваций до производства.The article raised topical issues of food security of the country under existing sanctions. Difficulties of import substitution were considered within the framework of the Russian agroindustrial complex (AIC). The article identified the existing problems in the agricultural sector of the economy and proposed ways to overcome them. The directions of innovations in agriculture, effective technologies in the agroindustrial complex, as well as the factors that inhibit their introduction into production are studied. There are given recommendations for bringing innovations to production

    Iso-osmotic regulation of nitrate accumulation in lettuce (Lactuca sativa L.)

    Get PDF
    Concerns about possible health hazards arising from human consumption of lettuce and other edible vegetable crops with high concentrations of nitrate have generated demands for a greater understanding of processes involved in its uptake and accumulation in order to devise more sustainable strategies for its control. This paper evaluates a proposed iso-osmotic mechanism for the regulation of nitrate accumulation in lettuce (Lactuca sativa L.) heads. This mechanism assumes that changes in the concentrations of nitrate and all other endogenous osmotica (including anions, cations and neutral solutes) are continually adjusted in tandem to minimise differences in osmotic potential of the shoot sap during growth, with these changes occurring independently of any variations in external water potential. The hypothesis was tested using data from six new experiments, each with a single unique treatment comprising a separate combination of light intensity, N source (nitrate with or without ammonium) and nitrate concentration carried out hydroponically in a glasshouse using a butterhead lettuce variety. Repeat measurements of plant weights and estimates of all of the main soluble constituents (nitrate, potassium, calcium, magnesium, organic anions, chloride, phosphate, sulphate and soluble carbohydrates) in the shoot sap were made at intervals from about 2 weeks after transplanting until commercial maturity, and the data used to calculate changes in average osmotic potential in the shoot. Results showed that nitrate concentrations in the sap increased when average light levels were reduced by between 30 and 49 % and (to a lesser extent) when nitrate was supplied at a supra-optimal concentration, and declined with partial replacement of nitrate by ammonium in the external nutrient supply. The associated changes in the proportions of other endogenous osmotica, in combination with the adjustment of shoot water content, maintained the total solute concentrations in shoot sap approximately constant and minimised differences in osmotic potential between treatments at each sampling date. There was, however, a gradual increase in osmotic potential (ie a decline in total solute concentration) over time largely caused by increases in shoot water content associated with the physiological and morphological development of the plants. Regression analysis using normalised data (to correct for these time trends) showed that the results were consistent with a 1:1 exchange between the concentrations of nitrate and the sum of all other endogenous osmotica throughout growth, providing evidence that an iso-osmotic mechanism (incorporating both concentration and volume regulation) was involved in controlling nitrate concentrations in the shoot

    Progression-free survival as a surrogate endpoint for overall survival in modern ovarian cancer trials: A meta-analysis

    Get PDF
    Background: Progression-free survival (PFS) has been adopted as the primary endpoint in many randomized controlled trials, and can be determined much earlier than overall survival (OS). We investigated whether PFS is a good surrogate endpoint for OS in trials of first-line treatment for epithelial ovarian cancer (EOC), and whether this relationship has changed with the introduction of new treatment types. Methods: In a meta-analysis, we identified summary data [hazard ratio (HR) and median time] from published randomized controlled trials. Linear regression was used to assess the association between treatment effects on PFS and OS overall, and for subgroups defined by treatment type, postprogression survival (PPS) and established prognostic factors. Results: Correlation between HRs for PFS and OS, in 26 trials with 30 treatment comparisons comprising 24,870 patients, was modest (r2 = 0.52, weighted by trial sample size). The correlation diminished with recency: preplatinum/paclitaxel era, r2 = 0.66; platinum/paclitaxel, r2 = 0.44; triplet combinations, r2 = 0.22; biologicals, r2 = 0.30. The median PPS increased over time for the experimental (Ptrend = 0.03) and control arms (Ptrend = 0.003). The difference in median PPS between treatment arms strongly correlated with the difference in median OS (r2 = 0.83). In trials where the control therapy had median PPS of less than 18 months, correlation between PFS and OS was stronger (r2 = 0.64) than where the median PPS was longer (r2 = 0.48). Conclusions: In EOC, correlation in the relative treatment effect between PFS and OS in first-line platinum-based chemotherapy randomized controlled trials is moderate and has weakened with increasing availability of effective salvage therapies

    Organische Bodensubstanz in sulfatsauren Böden

    Get PDF
    Sulfatsaure Böden sind Böden und Sedimente, die Eisensulfide enthalten und verbreitet in Küstenregionen und Binnenländern vorkommen. Unter wassergesättigten Bedingungen sind sie produktive Böden der Feuchtgebiete. Eine Austrocknung dieser Böden (durch Entwässerung oder Dürreperioden) führt zur Oxidation der Eisensulfide und damit zu einer starken Versauerung aufgrund der Freisetzung von Schwefelsäure. Nach Wiedervernässung und Wiedereinsetzen reduzierender Bedingungen führt die Aktivität sulfatreduzierender Bakterien zur Bildung von Pyrit und damit zur pH-Erhöhung. Sulfatreduzierende Bakterien sind heterotroph und benötigen ausreichend verfügbares organisches Material. In vielen Regionen kommt es jedoch nach Wiedervernässung solcher Standorte nicht zum erwarteten pH-Anstieg. Dies weist auf eine geringe Aktivität sulfatreduzierender Bakterien hin, obwohl die Gesamtmenge an organischer Bodensubstanz (OBS) in diesen Böden oft hoch ist. Wir vermuten daher, dass eine geringe Verfügbarkeit von OBS die Aktivität der Sulfatreduzierer in wiedervernässten sulfatsauren Böden limitiert. In unserer Studie wurden Menge und Zusammensetzung der OBS in Bodenprofilen zweier wiedervernässter sulfatsaurer Böden in Südaustralien untersucht. Hierbei wurde das Augenmerk besonders auf die verfügbare, nicht-mineralassoziierte OBS gelegt. Bei beiden Standorten handelte es sich um Flußsedimente, die während einer extremen Dürreperiode zwischen 2008 und 2010 tiefgründig austrockneten und stark versauerten (pH <4). Seit dem Ende der Dürreperiode sind beide Standorte wieder vollständig vernässt. In einem Standort erholte sich der pH-Wert vollständig und zeigte 2015 neutrale pH-Werte, während der andere Standort im Unterboden noch immer deutlich versauert war. In den Bodenproben wurde die Menge der OBS bestimmt und mittels Dichtefraktionierung der Anteil der nicht-mineralassoziierten OBS analysiert. Die chemische Zusammensetzung der OBS wurde mittels Festkörper 13C NMR Spektroskopie und Neutralzuckeranalytik untersucht. Es zeigte sich, dass die sulfatsauren Böden zwar hohe OBS-Mengen, jedoch niedrige Anteile an leicht abbaubaren Kohlenhydraten und Proteinen und hohe Anteile an schwer abbaubaren Lipiden und Lignin enthalten. Die geringsten Gehalte an Kohlenhydraten und Proteinen fanden sich im immer noch stark versauerten Boden. Schwer abbaubare OBS ist kaum als Substrat für Sulfatreduzierer geeignet und erschwert somit die pH-Erhöhung in wiedervernässten sulfatsauren Böden

    Guidelines for measuring and reporting environmental parameters for experiments in greenhouses

    Get PDF
    Background: The importance of appropriate, accurate measurement and reporting of environmental parameters in plant sciences is a significant aspect of quality assurance for all researchers and their research. There is a clear need for ensuring research across the world can be compared, understood and where necessary replicated by fellow researchers. A common set of guidelines to educate, assist and encourage comparativeness is of great importance. On the other hand, the level of effort and attention to detail by an individual researcher should be commensurate with the particular research being conducted. For example, a researcher focusing on interactions of light and temperature should measure all relevant parameters and report a measurement summary that includes sufficient detail allowing for replication. Such detail may be less relevant when the impact of environmental parameters on plant growth and development is not the main research focus. However, it should be noted that the environmental experience of a plant during production can have significant impact when subsequent experiments investigate plants at a molecular, biochemical or genetic level or where species interactions are considered. Thus, researchers are encouraged to make a critical assessment of what parameters are of primary importance in their research and these parameters should be measured and reported. Content: This paper brings together a collection of parameters that the authors, as members of International Committee on Controlled Environment Guidelines (ICCEG) in consultation with members of our three parent organizations, believe constitute those which should be recorded and reported when publishing scientific data from experiments in greenhouses. It provides recommendations to end users on when, how and where these parameters should be measured along with the appropriate internationally standardized units that should be used

    Leaf-applied sodium chloride promotes cadmium accumulation in durum wheat grain

    Get PDF
    Cadmium (Cd) accumulation in durum wheat grain is a growing concern. Among the factors affecting Cd accumulation in plants, soil chloride (Cl) concentration plays a critical role. The effect of leaf NaCl application on grain Cd was studied in greenhouse-grown durum wheat (Triticum turgidum L. durum, cv. Balcali-2000) by immersing (10 s) intact flag leaves into Cd and/or NaCl-containing solutions for 14 times during heading and dough stages. Immersing flag leaves in solutions containing increasing amount of Cd resulted in substantial increases in grain Cd concentration. Adding NaCl alone or in combination with the Cd-containing immersion solution promoted accumulation of Cd in the grains, by up to 41%. In contrast, Zn concentrations of grains were not affected or even decreased by the NaCl treatments. This is likely due to the effect of Cl complexing Cd and reducing positive charge on the metal ion, an effect that is much smaller for Zn. Charge reduction or removal (CdCl2 0 species) would increase the diffusivity/lipophilicity of Cd and enhance its capability to penetrate the leaf epidermis and across membranes. Of even more significance to human health was the ability of Cl alone to penetrate leaf tissue and mobilize and enhance shoot Cd transfer to grains, yet reducing or not affecting Zn transfer

    Rapid remediation of sandy sulfuric subsoils using straw-derived dissolved organic matter

    Get PDF
    When acid sulfate soils dry, oxidation of pyrite can cause acidification and formation of iron (Fe) oxyhydroxy sulfate phases such as jarosite. Remediation via re-establishment of reducing conditions requires submergence and addition of biodegradable organic carbon (OC) to stimulate activity of reducing bacteria. Addition of fresh plant litter has been shown to activate reducing bacteria, likely due to the release of readily available soluble organic matter. However, the effectiveness of soluble organic matter from plant residues has not been tested yet. Here, we tested the potential of wheat straw-derived dissolved OC (DOC) for remediation of a sandy sulfuric (pH < 4) soil. In a second set of experiments, we used combinations of wheat straw-derived DOC with lactate, which is a preferred substrate of sulfate reducing bacteria. All incubation experiments were conducted in the dark at 20 ◦C. The results showed that addition of DOC from wheat straw induces reduction reactions and rapidly increases the pH by 2–3 units after 3 weeks of incubation under submerged conditions. Mossbauer ¨ spectroscopy and X-ray diffraction revealed that jarosite was lost after 200 days of anoxic incubation. Short range-ordered FeIII oxyhydroxides were formed, most likely by FeII-catalysed transformation of jarosite. A second addition of DOC, as well as the addition of lactate, resulted in the almost complete loss of jarosite with increased proportions of FeIII oxyhydroxides in the remaining solids, but not in the formation of FeII sulfides. The formation of FeIII oxyhydroxides reduces the risk of both Fe leaching and renewed acidification in the event of future oxidation. The results suggest that deep injection of wheat straw-derived DOC is a promising approach for rapid and sustainable remediation of sandy sulfuric subsoilsAngelika Kolbl, Klaus Kaiser, Aaron Thompson, Luke Mosley, Rob Fitzpatrick, Petra Marschner, Leopold Sauheitl, Robert Mikutt
    corecore