30 research outputs found

    pdzrn3 is required for pronephros morphogenesis in Xenopus laevis

    Get PDF
    Pdzrn3, a multidomain protein with E3-ubiquitin ligase activity, has been reported to play a role in myoblast and osteoblast differentiation and, more recently, in neuronal and endothelial cell development. The expression of the pdzrn3 gene is developmentally regulated in various vertebrate tissues, including muscular, neural and vascular system. Little is known about its expression during kidney development, although genetic polymorphisms and alterations around the human pdzrn3 chromosomal region have been found to be associated with renal cell carcinomas and other kidney diseases. We investigated the pdzrn3 spatio-temporal expression pattern in Xenopus laevis embryos by in situ hybridization. We focused our study on the development of the pronephros, which is the embryonic amphibian kidney, functionally similar to the most primitive nephric structures of human kidney. To explore the role of pdzrn3 during renal morphogenesis, we performed loss-of-function experiments, through antisense morpholino injections and analysed the morphants using specific pronephric markers. Dynamic pdzrn3 expression was observed in embryonic tissues, such as somites, brain, eye, blood islands, heart, liver and pronephros. Loss of function experiments resulted in specific alterations of pronephros development. In particular, at early stages, pdzrn3 depletion was associated with a reduction of the pronephros anlagen and later, with perturbations of the tubulogenesis, including deformation of the proximal tubules. Rescue experiments, in which mRNA of the zebrafish pdzrn3 orthologue was injected together with the morpholino, allowed recovery of the kidney phenotypes. These results underline the importance of pdzrn3 expression for correct nephrogenesis

    Liposome-Mediated Delivery Improves the Efficacy of Lisosan G against Retinopathy in Diabetic Mice

    Get PDF
    Nutraceuticals are natural substances whose anti-oxidant and anti-inflammatory properties may be used to treat retinal pathologies. Their efficacy is limited by poor bioavailability, which could be improved using nanocarriers. Lisosan G (LG), a fermented powder from whole grains, protects the retina from diabetic retinopathy (DR)-induced damage. For this study, we tested whether the encapsulation of LG in liposomes (LipoLG) may increase its protective effects. Diabetes was induced in mice via streptozotocin administration, and the mice were allowed to freely drink water or a water dispersion of two different doses of LG or of LipoLG. Electroretinographic recordings after 6 weeks showed that only the highest dose of LG could partially protect the retina from diabetes-induced functional deficits, while both doses of LipoLG were effective. An evaluation of molecular markers of oxidative stress, inflammation, apoptosis, vascular endothelial growth factor, and the blood-retinal barrier confirmed that the highest dose of LG only partially protected the retina from DR-induced changes, while virtually complete prevention was obtained with either dose of LipoLG. These data indicate that the efficacy of LG in contrasting DR is greatly enhanced by its encapsulation in liposomes and may lay the ground for new dietary supplements with improved therapeutic effects against DR

    Cell-specific pattern of berberine pleiotropic effects on different human cell lines

    Get PDF
    The natural alkaloid berberine has several pharmacological properties and recently received attention as a potential anticancer agent. In this work, we investigated the molecular mechanisms underlying the anti-Tumor effect of berberine on glioblastoma U343 and pancreatic carcinoma MIA PaCa-2 cells. Human dermal fibroblasts (HDF) were used as non-cancer cells. We show that berberine differentially affects cell viability, displaying a higher cytotoxicity on the two cancer cell lines than on HDF. Berberine also affects cell cycle progression, senescence, caspase-3 activity, autophagy and migration in a cell-specific manner. In particular, in HDF it induces cell cycle arrest in G2 and senescence, but not autophagy; in the U343 cells, berberine leads to cell cycle arrest in G2 and induces both senescence and autophagy; in MIA PaCa-2 cells, the alkaloid induces arrest in G1, senescence, autophagy, it increases caspase-3 activity and impairs migration/invasion. As demonstrated by decreased citrate synthase activity, the three cell lines show mitochondrial dysfunction following berberine exposure. Finally, we observed that berberine modulates the expression profile of genes involved in different pathways of tumorigenesis in a cell line-specific manner. These findings have valuable implications for understanding the complex functional interactions between berberine and specific cell types

    Protopine/Gemcitabine Combination Induces Cytotoxic or Cytoprotective Effects in Cell Type-Specific and Dose-Dependent Manner on Human Cancer and Normal Cells

    Get PDF
    The natural alkaloid protopine (PRO) exhibits pharmacological properties including anticancer activity. We investigated the effects of PRO, alone and in combination with the chemotherapeutic gemcitabine (GEM), on human tumor cell lines and non-tumor human dermal fibroblasts (HDFs). We found that treatments with different PRO/GEM combinations were cytotoxic or cytoprotective, depending on concentration and cell type. PRO/GEM decreased viability in pancreatic cancer MIA PaCa-2 and PANC-1 cells, while it rescued the GEM-induced viability decline in HDFs and in tumor MCF-7 cells. Moreover, PRO/GEM decreased G1, S and G2/M phases, concomitantly with an increase of subG1 phase in MIA PaCa-2 and PANC-1 cells. Differently, PRO/GEM restored the normal progression of the cell cycle, altered by GEM, and decreased cell death in HDFs. PRO alone increased mitochondrial reactive oxygen species (ROS) in MIA PaCa-2, PANC-1 cells and HDFs, while PRO/GEM increased both intracellular and mitochondrial ROS in the three cell lines. These results indicate that specific combinations of PRO/GEM may be used to induce cytotoxic effects in pancreatic tumor MIA PaCa-2 and PANC-1 cells, but have cytoprotective or no effects in HDFs

    Isolamento ed espressione genica di un recettore serotoninergico in Xenopus leavis

    No full text
    Dottorato di ricerca in biologia molecolare e biofisica della cellula e dello sviluppo. 8. ciclo. Tutore I. NardiConsiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7, Rome; Biblioteca Nazionale Centrale - P.za Cavalleggeri, 1, Florence / CNR - Consiglio Nazionale delle RichercheSIGLEITItal

    HMGA Genes and Proteins in Development and Evolution

    No full text
    HMGA (high mobility group A) (HMGA1 and HMGA2) are small non-histone proteins that can bind DNA and modify chromatin state, thus modulating the accessibility of regulatory factors to the DNA and contributing to the overall panorama of gene expression tuning. In general, they are abundantly expressed during embryogenesis, but are downregulated in the adult dierentiated tissues. In the present review, we summarize some aspects of their role during development, also dealing with relevant studies that have shed light on their functioning in cell biology and with emerging possible involvement of HMGA1 and HMGA2 in evolutionary biolog

    A tandemly repeated DNA family originated from SINE-related elements in the European plethodontid salamanders (Amphibia, Urodela).

    No full text
    We have characterized a highly repetitive family, named Hy/Pol III, in the genome of the European salamanders Hydromantes (Plethodontidae). This family consists of short, tandemly repeated sequences organized in clusters, scattered through the genome as shown both by in situ hybridization to chromosomes and by Southern blot hybridization. The repeat unit is about 200 bp in length and it is a composite element since it contains a SINE-like retroposon with a tRNA structure, flanked by two short direct repeats. The whole element itself is bordered by two other direct repeats. The sequence data suggest that two elements, presumably derived from polymerase III transcripts, have been inserted one into the other, giving rise to the observed composite structure. During evolution the Hy/Pol III family was then amplified by tandem duplication at the DNA level. The inferred relationships between Hy/Pol III members from three representative species of the European Hydromantes suggests that a subfamily structure characterizes the evolutionary history of this family

    Surveys on populations of green frogs (Pelophylax) of Western Tuscany sites with molecular and morphometric methods

    No full text
    The water frogs of western Tuscany (Italy) belong to the L-E hybridogenetic system, and comprise one parental species and its hybrid. A stringent morphological approach for discriminating the Italian hybrids from non-hybrids has yet to be established. In this work, using the molecular marker RrS1, we have determined the hybrid versus non-hybrid status of 43 water frogs collected from two sampling sites (“Fiume Morto Vecchio” and “Padule di Bientina”). At “Fiume Morto Vecchio” we determined 25 non-hybrids and nine hybrids and in “Padule di Bientina” we determined eight hybrids and one non-hybrid individual. All individuals of these two frog populations were analyzed morphologically. We used the derived residuals from regression analysis of all normally distributed morphological parameters on callus internus length (snout to vent length, tibia length, head width, distance nostril eye, first toe length and body mass) to build sex independent variables in discriminant analysis providing a valid contribution to morphologically distinguish hybrids from non-hybrid green frogs in Italy
    corecore