3,067 research outputs found

    Accurate Modeling of Weak Lensing with the sGL Method

    Full text link
    We revise and extend the stochastic approach to cumulative weak lensing (hereafter the sGL method) first introduced in Ref. [1]. Here we include a realistic halo mass function and density profiles to model the distribution of mass between and within galaxies, galaxy groups and galaxy clusters. We also introduce a modeling of the filamentary large-scale structures and a method to embed halos into these structures. We show that the sGL method naturally reproduces the weak lensing results for the Millennium Simulation. The strength of the sGL method is that a numerical code based on it can compute the lensing probability distribution function for a given inhomogeneous model universe in a few seconds. This makes it a useful tool to study how lensing depends on cosmological parameters and its impact on observations. The method can also be used to simulate the effect of a wide array of systematic biases on the observable PDF. As an example we show how simple selection effects may reduce the variance of observed PDF, which could possibly mask opposite effects from very large scale structures. We also show how a JDEM-like survey could constrain the lensing PDF relative to a given cosmological model. The updated turboGL code is available at turboGL.org.Comment: PRD style: 20 pages, 10 figures; replaced to match the improved version accepted for publication in PRD. The updated turboGL code can be downloaded at http://www.turbogl.org

    High-resolution UAV imagery for field olive (Olea europaea L.) phenotyping

    Get PDF
    Remote sensing techniques based on images acquired from unmanned aerial vehicles (UAVs) could represent an effective tool to speed up the data acquisition process in phenotyping trials and, consequently, to reduce the time and cost of the field work. In this study, we assessed the ability of a UAV equipped with RGB-NIR cameras in highlighting differences in geometrical and spectral canopy characteristics between eight olive cultivars planted at different planting distances in a hedgerow olive orchard. The relationships between measured and estimated canopy height, projected canopy area and canopy volume were linear regardless of the different cultivars and planting distances (RMSE of 0.12 m, 0.44m2 and 0.68m3, respectively). Agood relationship (R2 = 0.95) was found between the pruning mass material weighted on the ground and its volume estimated by aerial images. NDVI measured in February 2019 was related to fruit yield per tree measured in November 2018, whereas no relationships were observed with the fruit yield measured in November 2019 due to abiotic and biotic stresses that occurred before harvest. These results confirm the reliability of UAV imagery and structure from motion techniques in estimating the olive geometrical canopy characteristics and suggest further potential applications of UAVs in early discrimination of yield efficiency between different cultivars and in estimating the pruning material volume

    Palaeomagnetic results from an archaeological site near Rome (Italy): new insights for tectonic rotation during the last 0.5 Myr

    Get PDF
    Approximately 20 km north-east of Rome, along the modern trace of the Tiburtina road, recent archaeological diggings have brought to light a system of aqueduct galleries constructed by Roman engineers. This site falls inside the Acque Albule Basin, a travertine plateau Upper Pleistocene in age, that has been interpreted as a rhombshaped pull-apart basin created by strike-slip faulting within a N-S shear zone. This study provides evidence that two narrow water channels of this aqueduct system were significantly deformed by tectonic movement that occurred subsequent to their construction (II-III century A.D.). The geometry of the deformation pattern is compatible with that expected for a shear zone bounded by N-S oriented, right-lateral faults. The palaeomagnetic study of the volcanic formation («Pozzolane Rosse» Formation, 457± 4 kyr) containing the Roman aqueduct system evidences significant clockwise rotation around sub-vertical axis, consistent with the above-mentioned tectonic style

    The Atmospheric Dispersion Corrector Software for the VST

    Get PDF
    The effects of atmospheric differential refraction on astrophysical measurements are well known. In particular, as a ray of light passes through the atmosphere, its direction is altered by the effects of atmospheric refraction. The amount of this effect depends basically on the variation of the refractive index along the path of the ray. The real accuracy needed in the atmosphere model and in the calculation of the correction to be applied is of course, considerably worse, especially at large zenith angles. On the VLT Survey Telescope (VST) the use of an Atmospheric Dispersion Corrector (ADC) is foreseen at a wide zenith distance range. This paper describes the software design and implementation aspects regarding the analytical correction law discovered to correct the refraction effect during observations with VST

    Assessment of Trends and Uncertainties in the Atmospheric Boundary Layer Height Estimated Using Radiosounding Observations over Europe

    Get PDF
    Trends in atmospheric boundary layer height may represent an indication of climate changes. The related modified interaction between the surface and free atmosphere affects both thermodynamics variables and dilution of chemical constituents. Boundary layer is also a major player in various feedback mechanisms of interest for climate models. This paper investigates trends in the nocturnal and convective boundary layer height at mid-latitudes in Europe using radiosounding profiles from the Integrated Global Radiosounding Archive (IGRA). Atmospheric data from the European Centre for Medium-Range Weather Forecasts (ECMWF) ReAnalysis v5 (ERA5) and from the GCOS Reference Upper-Air Network (GRUAN) Lindenberg station are used as intercomparison datasets for the study of structural and parametric uncertainties in the trend analysis. Trends are calculated after the removal of the lag-1 autocorrelation term for each time series. The study confirms the large differences reported in literature between the boundary layer height estimates obtained with the two different algorithms used for IGRA and ERA5 data: ERA5 shows a density distribution with median values of 350 m and 1150 m for the night and the daytime data, respectively, while the corresponding IGRA median values are of 1150 m and 1750 m. An overall good agreement between the estimated trends is found for nighttime data, while daytime ERA5 boundary layer height estimates over Europe are characterized by a lower spatial homogeneity than IGRA. Parametric uncertainties due to missing data in both the time and space domain are also investigated: the former is not exceeding 1.5 m, while the latter are within 10 m during night and 17 m during the day. Recommendations on dataset filtering based on time series completeness are provided. Finally, the comparison between the Lindenberg data as processed at high-resolution by GRUAN and as provided to IGRA at a lower resolution, shows the significant impact of using high-resolution data in the determination of the boundary layer height, with differences from about 200 m to 450 m for both night and day, as well as a large deviation in the estimated trend

    Avaliação do crescimento vegetativo em cafeeiro arábica e sua dependência com fatores climáticos no Estado de Goiás.

    Get PDF
    Objetivou-se avaliar o crescimento vegetativo em Coffea arabica e relacioná-lo com os fatores climáticos, tendo como base o crescimento sazonal dos ramos ortotrópicos e plagiotrópicos, com diferentes idades, em condições irrigadas e não irrigadas, sujeitos as alterações climáticas e ao déficit hídrico no Cerrado Goiano.Conpeex 2010

    Radiometric age constraints for glacial terminations IX and VII

    Get PDF
    Buried sedimentary aggradational sections deposited between 800 ka and 600 ka in the Tiber River coastal alluvial plain have been studied using borecores from around Rome. 40Ar/39Ar ages on sanidine and/or leucite from intercalated tephra layers and paleomagnetic investigation of clay sections provide geochronological constraints on the timing of aggradation of two of these alluvial sections, and demonstrate that they were deposited in response to eustatic sea level rise caused by glacial terminations IX and VII. 40Ar/39Ar age data indicate ages of 802 ± 8 ka and 649 ± 3 ka for glacial terminations IX, and VII, respectively, providing a rare test, beyond the range of U-series dating for corals and speleothems (~500 ka), of the astronomically calibrated timescale developed for oxygen isotope records from deep sea cores
    corecore