158 research outputs found

    Electrical, mechanical and electromechanical properties of graphene-thermoset polymer composites produced using acetone-DMF solvents

    Get PDF
    Recently, graphene-polymer composites gained a central role in advanced stress and strain sensing. A fundamental step in the production of epoxy-composites filled with graphene nanoplatelets (GNPs) consists in the exfoliation and dispersion of expanded graphite in a proper solvent, in the mixing of the resulting GNP suspension with the polymer matrix, and in the final removal of the solvent from the composite before curing through evaporation. The effects of traces of residual solvent on polymer curing process are usually overlooked, even if it has been found that even a small amount of residual solvent can affect the mechanical properties of the final composite. In this paper, we show that residual traces of N,N′-Dimethylformamide (DMF) in vinylester epoxy composites can induce relevant variations of the electrical, mechanical and electromechanical properties of the cured GNP-composite. To this purpose, a complete analysis of the morphological and structural characteristics of the composite samples produced using different solvent mixtures (combining acetone and DMF) is performed. Moreover, electrical, mechanical and electromechanical properties of the produced composites are assessed. In particular, the effect on the piezoresistive response of the use of DMF in the solvent mixture is analyzed using an experimental strain dependent percolation law to fit the measured electromechanical data. It is shown that the composites realized using a higher amount of DMF are characterized by a higher electrical conductivity and by a strong reduction of Young’s Modulus

    Electromagnetic and electromechanical applications of graphene-based materials

    Get PDF
    This volume contains the extended abstracts of the contributions presented at the workshop Nanoscale Excitations in Emergent Materials (NEEM 2015) held in Rome from 12 to 14 October 2015, an event organized and supported in the framework of the Bilateral Cooperation Agreement between Italy and India within the project of major relevance "Investigating local structure and magnetism of cobalt nano-structures", funded by the Italian Ministry of Foreign Affairs and the Department of Science and Technology in India

    Cardiovascular abnormalities and impaired exercise performance in adolescents with congenital adrenal hyperplasia

    Get PDF
    Context: Patients with classic Congenital Adrenal Hyperplasia (CAH) are treated with lifelong glucocorticoids (GCS). Cardiovascular (CV) and metabolic effects of such therapy in adolescents have never been quantified. Objective: To investigate left ventricular (LV) morphology, function and exercise performance in adolescents with CAH. Design and Setting: cross-sectional and controlled study conducted at a tertiary referral centre. Patients: Twenty patients with classic CAH (10 females) aged 13.6±2.5 years and 20 healthy controls comparable for sex and pubertal status were enrolled in the study and compared to a group of 18 patients without CAH receiving a similar dose of GCS for Juvenile Idiopathic Arthritis (JIA). Main Outcomes Measures: Echocardiographic assessment and symptom-limited exercise testing were performed. Anthropometric, hormonal and biochemical parameters were also measured. Results: Compared to healthy controls, patients with CAH exhibited an increased BMI (p<0.001), waist-to-height ratio (p<0.001), percentage of body fat (p<0.001) as well as higher insulin concentrations and HOMA index even after adjustment for BMI (p=0.03 and p=0.05, respectively). Moreover, CAH patients exhibited an impaired exercise capacity as shown by reduced peak workload (99±27 vs 126±27 W, p<0.01) and higher systolic blood pressure response at peak (156±18 vs 132±11 mmHg, p<0.01; Δ=45±24 vs 22±10 mmHg, p=0.05) with respect to healthy controls. CAH males displayed mild LV diastolic dysfunction as documented by significant prolongation of both isovolumic relaxation time (IRT) (118±18 vs 98±11ms, p<0.05) and mitral deceleration time (MDT) (138±25 vs 111±15 ms, p<0.01). No significant differences in CV function were found between CAH and JIA patients. Conclusion: Adolescents with CAH exhibit impaired exercise performance and enhanced systolic blood pressure response during exercise. In our population, such abnormalities appear related to GCS therapy rather than CAH per se. CAH males, but no females, present mild LV diastolic dysfunction that correlates with testosterone concentrations suggesting a sex hormone related difference

    Observational constraints on inhomogeneous cosmological models without dark energy

    Full text link
    It has been proposed that the observed dark energy can be explained away by the effect of large-scale nonlinear inhomogeneities. In the present paper we discuss how observations constrain cosmological models featuring large voids. We start by considering Copernican models, in which the observer is not occupying a special position and homogeneity is preserved on a very large scale. We show how these models, at least in their current realizations, are constrained to give small, but perhaps not negligible in certain contexts, corrections to the cosmological observables. We then examine non-Copernican models, in which the observer is close to the center of a very large void. These models can give large corrections to the observables which mimic an accelerated FLRW model. We carefully discuss the main observables and tests able to exclude them.Comment: 27 pages, 7 figures; invited contribution to CQG special issue "Inhomogeneous Cosmological Models and Averaging in Cosmology". Replaced to match the improved version accepted for publication. Appendix B and references adde

    Anti-tumor Efficacy Assessment of the Sigma Receptor Pan Modulator RC-106. A Promising Therapeutic Tool for Pancreatic Cancer

    Get PDF
    Introduction: Pancreatic cancer (PC) is one of the most lethal tumor worldwide, with no prognosis improvement over the past 20-years. The silent progressive nature of this neoplasia hampers the early diagnosis, and the surgical resection of the tumor, thus chemotherapy remains the only available therapeutic option. Sigma receptors (SRs) are a class of receptors proposed as new cancer therapeutic targets due to their over-expression in tumor cells and their involvement in cancer biology. The main localization of these receptors strongly suggests their potential role in ER unfolded protein response (ER-UPR), a condition frequently occurring in several pathological settings, including cancer. Our group has recently identified RC-106, a novel pan-SR modulator with good in vitro antiproliferative activities toward a panel of different cancer cell lines. In the present study, we investigated the in vitro properties and pharmacological profile of RC-106 in PC cell lines with the aim to identify a potential lead candidate for the treatment of this tumor.Methods: Pancreatic cancer cell lines Panc-1, Capan-1, and Capan-2 have been used in all experiments. S1R and TMEM97/S2R expression in PC cell lines was quantified by Real-Time qRT-PCR and Western Blot experiments. MTS assay was used to assess the antiproliferative effect of RC-106. The apoptotic properties of RC-106 was evaluated by TUNEL and caspase activation assays. GRP78/BiP, ATF4, and CHOP was quantified to evaluate ER-UPR. Proteasome activity was investigated by a specific fluorescent-based assay. Scratch wound healing assay was used to asses RC-106 effect on cell migration. In addition, we delineated the in vivo pharmacokinetic profile and pancreas distribution of RC-106 in male CD-1 mice.Results: Panc-1, Capan-1, and Capan-2 express both SRs. RC-106 exerts an antiproliferative and pro-apoptotic effect in all examined cell lines. Cells exposure to RC-106 induces the increase of the expression of ER-UPR related proteins, and the inhibition of proteasome activity. Moreover, RC-106 is able to decrease PC cell lines motility. The in vivo results show that RC-106 is more concentrated in pancreas than plasma.Conclusion: Overall, our data evidenced that the pan-SR modulator RC-106 is an optimal candidate for in vivo studies in animal models of PC

    Measuring our Peculiar Velocity by "Pre-deboosting" the CMB

    Full text link
    It was recently shown that our peculiar velocity \beta with respect to the CMB induces mixing among multipoles and off-diagonal correlations at all scales which can be used as a measurement of \beta, which is independent of the standard measurement using the CMB temperature dipole. The proposed techniques rely however on a perturbative expansion which breaks down for \ell \gtrsim 1/(\beta) \approx 800. Here we propose a technique which consists of deboosting the CMB temperature in the time-ordered data and show that it extends the validity of the perturbation analysis multipoles up to \ell \sim 10000. We also obtain accurate fitting functions for the mixing between multipoles valid in a full non-linear treatment. Finally we forecast the achievable precision with which these correlations can be measured in a number of current and future CMB missions. We show that Planck could measure the velocity with a precision of around 60 km/s, ACTPol in 4 years around 40 km/s, while proposed future experiments could further shrink this error bar by over a factor of around 2.Comment: 14 pages, 7 figures. Revised projections for ACTPol, SPTPol and ACBAR; included projections for BICEP2; extended conclusions; typos correcte
    • …
    corecore