2 research outputs found

    Analysis of variants in the HCN4 gene and in three single nucleotide polymorphisms of the CYP3A4 gene for association with ivabradine reduction in heart rate: A preliminary report

    Get PDF
    Background: Ivabradine, a selective bradycardic drug, inhibits the If. In patients with heart failure (HF), ivabradine reduces the risk of rehospitalization and mortality. The average heart rate (HR) reduction is 8–10 beats, although clinical trials reveal interindividual variability. The aim of the study is to identify variants associated with HR reduction produced by ivabradine in genes involved in the drug metabolism (CYP3A4) or related to the drug target (HCN4). Methods: In an exploratory cohort (n = 11), patients started on ivabradine were genotyped and the HR reduction was studied. Results: The mean HR reduction after the treatment was 18.10 ± 12.26 bpm. The HR reduction was ≥ 15 bpm in 3 patients and > 5 and < 15 bpm in 7 patients. Four synonymous variants, L12L, L520L, P852P, and P1200P, were detected in the HCN4 gene (frequency = 0.045, 0.045, and 0.681, respectively). Moreover, the CYP3A4*1F and CYP3A4*1B were found in one patient each and CYP3A4*1G was presented in 3 patients. Conclusions: This is the first study using an exploratory pharmacogenetic approach that attempts to explain interindividual variability in ivabradine HR reduction. However, more research must be undertaken in order to determine the role of variants in HCN4 and CYP3A4 genes in response to ivabradine

    Role of plakophilin-2 expression on exercise-related progression of arrhythmogenic right ventricular cardiomyopathy:a translational study

    Get PDF
    AIMS: Exercise increases arrhythmia risk and cardiomyopathy progression in arrhythmogenic right ventricular cardiomyopathy (ARVC) patients, but the mechanisms remain unknown. We investigated transcriptomic changes caused by endurance training in mice deficient in plakophilin-2 (PKP2cKO), a desmosomal protein important for intercalated disc formation, commonly mutated in ARVC and controls. METHODS AND RESULTS: Exercise alone caused transcriptional downregulation of genes coding intercalated disk proteins. The changes converged with those in sedentary and in exercised PKP2cKO mice. PKP2 loss caused cardiac contractile deficit, decreased muscle mass and increased functional/transcriptomic signatures of apoptosis, despite increased fractional shortening and calcium transient amplitude in single myocytes. Exercise accelerated cardiac dysfunction, an effect dampened by pre-training animals prior to PKP2-KO. Consistent with PKP2-dependent muscle mass deficit, cardiac dimensions in human athletes carrying PKP2 mutations were reduced, compared to matched controls. CONCLUSIONS: We speculate that exercise challenges a cardiomyocyte "desmosomal reserve" which, if impaired genetically (e.g., PKP2 loss), accelerates progression of cardiomyopathy
    corecore