8 research outputs found

    Molecular Analysis of a Case of Thanatophoric Dysplasia Reveals Two de novo FGFR3 Missense Mutations located in cis

    Get PDF
    Objectives: Thanatophoric dysplasia (TD) is the most common form of lethal skeletal dysplasia. It is primarily an autosomal dominant disorder and is characterised by macrocephaly, a narrow thorax, short ribs, brachydactyly, and hypotonia. In addition to these core phenotypic features, TD type I involves micromelia with bowed femurs, while TD type II is characterised by micromelia with straight femurs and a moderate to severe clover-leaf deformity of the skull. Mutations in the FGFR3 gene are responsible for all cases of TD reported to date. The objective of the study here was to delineate further the mutational spectrum responsible for TD. Methods: Conventional polymerase chain reaction (PCR), allele-specific PCR, and sequence analysis were used to identify FGFR3 gene mutations in a fetus with a lethal skeletal dysplasia consistent with TD, which was detected during a routine antenatal ultrasound examination. Results: In this report we describe the identification of two de novo missense mutations in cis in the FGFR3 gene (p.Asn540Lys and p.Val555Met) in a fetus displaying phenotypic features consistent with TD. Conclusion: This is the second description of a case of TD occurring as a result of double missense FGFR3 gene mutations, suggesting that the spectrum of mutations involved in the pathogenesis of TD may be broader than previously recognised

    Array-based Identification of Copy Number Changes in a Diagnostic Setting : Simultaneous gene-focused and low resolution whole human genome analysis

    Get PDF
    Objectives: The aim of this study was to develop and validate a comparative genomic hybridisation (CGH) array that would allow simultaneous targeted analysis of a panel of disease genes and low resolution whole genome analysis. Methods: A bespoke Roche NimbleGen 12x135K CGH array (Roche NimbleGen Inc., Madison, Wisconsin, USA) was designed to interrogate the coding regions of 66 genes of interest, with additional widelyspaced backbone probes providing coverage across the whole genome. We analysed genomic deoxyribonucleic acid (DNA) from 20 patients with a range of previously characterised copy number changes and from 8 patients who had not previously undergone any form of dosage analysis. Results: The custom-designed Roche NimbleGen CGH array was able to detect known copy number changes in all 20 patients. A molecular diagnosis was also made for one of the additional 4 patients with a clinical diagnosis that had not been confirmed by sequence analysis, and carrier testing for familial copy number variants was successfully completed for the remaining four patients. Conclusion: The custom-designed CGH array described here is ideally suited for use in a small diagnostic laboratory. The method is robust, accurate, and cost-effective, and offers an ideal alternative to more conventional targeted assays such as multiplex ligation-dependent probe amplification

    Diabetic Dead-in-Bed Syndrome: A Possible Link to a Cardiac Ion Channelopathy

    Get PDF
    Sudden unexpected nocturnal death among patients with diabetes occurs approximately ten times more commonly than in the general population. Malignant ventricular arrhythmia due to Brugada syndrome has been postulated as a cause, since a glucose-insulin bolus can unmask the Brugada electrocardiographic signature in genetically predisposed individuals. In this report we present a 16-year-old male with insulin-dependent diabetes who died suddenly at night. His diabetes had been well controlled, without significant hypoglycaemia. At autopsy, he had a full stomach and a glucose level of 7 mmol/L in vitreous humor, excluding hypoglycaemia. Genetic analysis of autopsy DNA revealed a missense mutation, c.370A>G (p.Ile124Val), in the GPD1L gene. A parent carried the same mutation and has QT prolongation. Mutations in this gene have been linked to Brugada syndrome and sudden infant death. The patient may have died from a ventricular arrhythmia, secondary to occult Brugada syndrome, triggered by a full stomach and insulin. The data suggest that molecular autopsies are warranted to investigate other cases of the diabetic dead-in-bed syndrome

    Gene Dosage Analysis in a Clinical Environment: Gene-Targeted Microarrays as the Platform-of-Choice

    No full text
    The role of gene deletion and duplication in the aetiology of disease has become increasingly evident over the last decade. In addition to the classical deletion/duplication disorders diagnosed using molecular techniques, such as Duchenne Muscular Dystrophy and Charcot-Marie-Tooth Neuropathy Type 1A, the significance of partial or whole gene deletions in the pathogenesis of a large number single-gene disorders is becoming more apparent. A variety of dosage analysis methods are available to the diagnostic laboratory but the widespread application of many of these techniques is limited by the expense of the kits/reagents and restrictive targeting to a particular gene or portion of a gene. These limitations are particularly important in the context of a small diagnostic laboratory with modest sample throughput. We have developed a gene-targeted, custom-designed comparative genomic hybridisation (CGH) array that allows twelve clinical samples to be interrogated simultaneously for exonic deletions/duplications within any gene (or panel of genes) on the array. We report here on the use of the array in the analysis of a series of clinical samples processed by our laboratory over a twelve-month period. The array has proven itself to be robust, flexible and highly suited to the diagnostic environment

    A Novel 2.3 Mb Microduplication of 9q34.3 Inserted into 19q13.4 in a Patient with Learning Disabilities

    Get PDF
    Insertional translocations in which a duplicated region of one chromosome is inserted into another chromosome are very rare. We report a 16.5-year-old girl with a terminal duplication at 9q34.3 of paternal origin inserted into 19q13.4. Chromosomal analysis revealed the karyotype 46,XX,der(19)ins(19;9)(q13.4;q34.3q34.3)pat. Cytogenetic microarray analysis (CMA) identified a ~2.3Mb duplication of 9q, which was confirmed by Fluorescence in situ hybridisation (FISH). The duplication at 9q34.3 is the smallest among the cases reported so far. The proband exhibits similar clinical features to those previously reported cases with larger duplication events
    corecore