88 research outputs found
A novel topographic parameterization scheme indicates that martian gullies display the signature of liquid water
Martian gullies resemble gullies carved by water on Earth, yet are thought to have formed in an extremely cold (2-driven processes. That this argument persists demonstrates the limitations of morphological interpretations made from 2D images, especially when similar-looking landforms can form by very different processes. To overcome this we have devised a parameterization scheme, based on statistical discriminant analysis and hydrological terrain analysis of meter-scale digital topography data, which can distinguish between dry and wet surface processes acting on a landscape. Applying this approach to new meter-scale topographic datasets of Earth, the Moon and Mars, we demonstrate that martian gullied slopes are dissimilar to dry, gullied slopes on Earth and the Moon, but are similar to both terrestrial debris flows and fluvial gullies. We conclude that liquid water was integral to the process by which martian gullies formed. Finally, our work shows that quantitative 3D analyses of landscape have great potential as a tool in planetary science, enabling remote assessment of processes acting on planetary surfaces
Diversity and Mega-Targets of Selection from the Characterization of a Barley Collection
Germplasm exchange is essential for assuring genetic gain in a breeding program. Two aspects of breeding programs are relevant to making them compatible for germplasm exchange: the amount of genetic diversity within programs and the identifi cation of breeding programs with similar breeding objectives and environments of selection (i.e., mega-targets of selection). The objective of this study was to develop a data-driven method to group breeding programs likely to be compatible for germplasm exchange and to use phenotypic characterization data of barley (Hordeum vulgare L.) from breeding programs to illustrate this method. In two locations in Uruguay we evaluated 20 traits in 353 genotypes of barley from 23 private and public breeding programs distributed worldwide. We found signifi cant amounts of genetic diversity for all traits, but differences in diversity among programs for only seven traits. We identifi ed programs with high (Western Australia Department of Agriculture; University of Saskatchewan; and Svalöf Weibull Ab, Sweden) and low diversity (winter program of Osijek Agricultural Institute, Croatia; spring program of Osijek Agricultural Institute, Croatia; Saatzucht Josef Breun, Germany; Busch Agricultural Resources; USDA-ARS, Aberdeen, ID; and University of Minnesota). We developed a methodology that groups programs with similar performance and response to the environments. We used the methodology to group the 23 breeding programs of barley into sets that might benefi t most from germplasm exchange. The identifi cation of compatible programs for germplasm exchange could be relevant for improving genetic gains in breeding programs
Detection and verification of malting quality QTLs using wild barley introgression lines
A malting quality quantitative trait locus (QTL) study was conducted using a set of 39 wild barley introgression lines (hereafter abbreviated with S42ILs). Each S42IL harbors a single marker-defined chromosomal segment from the wild barley accession ‘ISR 42-8’ (Hordeum vulgare ssp. spontaneum) within the genetic background of the elite spring barley cultivar ‘Scarlett’ (Hordeum vulgare ssp. vulgare). The aim of the study was (1) to verify genetic effects previously identified in the advanced backcross population S42, (2) to detect new QTLs, and (3) to identify S42ILs exhibiting multiple QTL effects. For this, grain samples from field tests in three different environments were subjected to micro malting. Subsequently, a line × phenotype association study was performed with the S42ILs in order to localize putative QTL effects. A QTL was accepted if the trait value of a particular S42IL was significantly (P < 0.05) different from the recurrent parent as a control, either across all tested environments or in a particular environment. For eight malting quality traits, altogether 40 QTLs were localized, among which 35 QTLs (87.5%) were stable across all environments. Six QTLs (15.0%) revealed a trait improving wild barley effect. Out of 36 QTLs detected in a previous advanced backcross QTL study with the parent BC2DH population S42, 18 QTLs (50.0%) could be verified with the S42IL set. For the quality parameters α-amylase activity and Hartong 45°C, all QTLs assessed in population S42 were verified by S42ILs. In addition, eight new QTL effects and 17 QTLs affecting two newly investigated traits were localized. Two QTL clusters harboring simultaneous effects on eight and six traits, respectively, were mapped to chromosomes 1H and 4H. In future, fine-mapping of these QTL regions will be conducted in order to shed further light on the genetic basis of the most interesting QTLs
Association mapping of malting quality traits in UK spring and winter barley cultivar collections
Key Message: Historical malting quality data was collated from UK national and recommended list trial data and used in a GWAS. 25 QTL were identified, with the majority from spring barley cultivar sets. Abstract: In Europe, the most economically significant use of barley is the production of malt for use in the brewing and distilling industries. As such, selection for traits related to malting quality is of great commercial interest. In order to study the genetic basis of variation for malting quality traits in UK cultivars, a historical set of trial data was collated from national and recommended list trials from the period 1988 to 2016. This data was used to estimate variety means for 20 quality related traits in 451 spring barley cultivars, and 407 winter cultivars. Genotypes for these cultivars were generated using iSelect 9k and 50k genotyping platforms, and a genome wide association scan performed to identify malting quality quantitative trait loci (QTL). 24 QTL were identified in spring barley cultivars, and 2 from the winter set. A number of these correspond to known malting quality related genes but the remainder represents novel genetic variation that is accessible to breeders for the genetic improvement of new cultivars.Mark E. Looseley, Luke Ramsay, Hazel Bull, J. Stuart Swanston, Paul D. Shaw, Malcolm Macaulay, Allan Booth, Joanne R. Russell, Robbie Waugh, on behalf of the IMPROMALT Consortium, William T.B. Thoma
Recommended from our members
Quantitative trait locus analysis of agronomic and malting quality traits in the Harrington x Morex barley (Hordeum vulgare L.) mapping population
Characterization of the determinants of economically important phenotypes
showing complex inheritance should lead to more effective use of genetic
resources. This study was conducted to determine the number, genome location and
effects of QTLs determining malting quality and agronomic traits in the two North
American barley quality standards. Using a doubled haploid population of 140 lines
from the cross of Harrington x Morex, agronomic phenotype and malting quality
data sets from nine and eight environments, respectively, and a 107-marker linkage
map, QTL analyses were performed using simple interval mapping and simplified
composite interval mapping procedures. Thirty five QTLs were associated either
across environments or in individual environments, with five grain and agronomic
traits (yield, kernel plumpness, test weight, heading date and plant height).
Thirteen QTLs were associated with five malting quality traits (grain protein
percentage, soluble/total protein ratio, α-amylase activity, diastatic power and malt
extract percentage). QTLs for multiple traits were coincident. The loci controlling
inflorescence type [vrsl on chromosome 2 (2H) and int-c on chromosome 4 (4H)]
were coincident with QTLs affecting all traits except heading date and malt extract
percentage. The largest effect QTLs -for yield, kernel plumpness test weight, plant
height grain protein percentage, S/T ratio, and diastatic power- were coincident
with the vrsl locus. QTL analyses were conducted separately for each sub-population
(six-rowed and two-rowed). Ten new QTLs were detected in the sub-populations.
There were significant interactions between the vrsl and int-c loci for
plant height, grain protein percentage, and SIT protein ratio. Positive transgressive
segregants were found for all agronomic traits. They were more prevalent in the
six-rowed sub-population, indicating that more favorable alleles were fixed in the
two-rowed parent. Results suggest that this mating of two parents representing
different germplasm groups caused a disruption in the balance of traits involved in
malting quality, which resulted in no progeny carrying all favorable alleles and
therefore surpassing the quality of either parent. This study describes some of the
genetic determinants of agronomic and malting quality traits in a two-rowed x six-rowed
cross and it is a first step toward the further characterization and
manipulation of these determinants
- …