9,670 research outputs found

    Local entropic effects of polymers grafted to soft interfaces

    Full text link
    In this paper, we study the equilibrium properties of polymer chains end-tethered to a fluid membrane. The loss of conformational entropy of the polymer results in an inhomogeneous pressure field that we calculate for gaussian chains. We estimate the effects of excluded volume through a relation between pressure and concentration. Under the polymer pressure, a soft surface will deform. We calculate the deformation profile for a fluid membrane and show that close to the grafting point, this profile assumes a cone-like shape, independently of the boundary conditions. Interactions between different polymers are also mediated by the membrane deformation. This pair-additive potential is attractive for chains grafted on the same side of the membrane and repulsive otherwise.Comment: 10 pages, 9 figure

    Hawking radiation for non asymptotically flat dilatonic black holes using gravitational anomaly

    Full text link
    The dd-dimensional scalar field action may be reduced, in the background geometry of a black hole, to a 2-dimensional effective action. In the near horizon region, it appears a gravitational anomaly: the energy-momentum tensor of the scalar field is not conserved anymore. This anomaly is removed by introducing a term related to the Hawking temperature of the black hole. Even if the temperature term introduced is not covariant, a gauge transformation may restore the covariance. We apply this method to compute the temperature of the black hole of the dilatonic non asymptotically flat black holes. We compare the results with those obtained through other methods.Comment: Latex file, 22 pages. Some discussions enlarged. New references. Accepted for publication in the European Physical Journal

    Scattering from Solutions of Star Polymers

    Full text link
    We calculate the scattering intensity of dilute and semi-dilute solutions of star polymers. The star conformation is described by a model introduced by Daoud and Cotton. In this model, a single star is regarded as a spherical region of a semi-dilute polymer solution with a local, position dependent screening length. For high enough concentrations, the outer sections of the arms overlap and build a semi-dilute solution (a sea of blobs) where the inner parts of the actual stars are embedded. The scattering function is evaluated following a method introduced by Auvray and de Gennes. In the dilute regime there are three regions in the scattering function: the Guinier region (low wave vectors, q R << 1) from where the radius of the star can be extracted; the intermediate region (1 << q R << f^(2/5)) that carries the signature of the form factor of a star with f arms: I(q) ~ q^(-10/3); and a high wavevector zone (q R >> f^(2/5)) where the local swollen structure of the polymers gives rise to the usual q^(-5/3) decay. In the semi-dilute regime the different stars interact strongly, and the scattered intensity acquires two new features: a liquid peak that develops at a reciprocal position corresponding to the star-star distances; and a new large wavevector contribution of the form q^(-5/3) originating from the sea of blobs.Comment: REVTeX, 12 pages, 4 eps figure

    Neural Relax

    Full text link
    We present an algorithm for data preprocessing of an associative memory inspired to an electrostatic problem that turns out to have intimate relations with information maximization

    Informações sobre a fase de viveiro de algumas espécies florestais na Amazônia brasileira.

    Get PDF
    bitstream/item/31917/1/CPATU-BP49.pd
    corecore