17 research outputs found

    Noise and Measurement Efficiency of a Partially Coherent Mesoscopic Detector

    Full text link
    We study the noise properties and efficiency of a mesoscopic resonant-level conductor which is used as a quantum detector, in the regime where transport through the level is only partially phase coherent. We contrast models in which detector incoherence arises from escape to a voltage probe, versus those in which it arises from a random time-dependent potential. Particular attention is paid to the back-action charge noise of the system. While the average detector current is similar in all models, we find that its noise properties and measurement efficiency are sensitive both to the degree of coherence and to the nature of the dephasing source. Detector incoherence prevents quantum limited detection, except in the non-generic case where the source of dephasing is not associated with extra unobserved information. This latter case can be realized in a version of the voltage probe model.Comment: 15 pages, 5 figures; revised dicussion of voltage probe model

    Communicating Josephson Qubits

    Full text link
    We propose a scheme to implement a quantum information transfer protocol with a superconducting circuit and Josephson charge qubits. The information exchange is mediated by an L-C resonator used as a data bus. The main decoherence sources are analyzed in detail.Comment: 4 pages, 2 figure

    Multiband tight-binding theory of disordered ABC semiconductor quantum dots: Application to the optical properties of alloyed CdZnSe nanocrystals

    Full text link
    Zero-dimensional nanocrystals, as obtained by chemical synthesis, offer a broad range of applications, as their spectrum and thus their excitation gap can be tailored by variation of their size. Additionally, nanocrystals of the type ABC can be realized by alloying of two pure compound semiconductor materials AC and BC, which allows for a continuous tuning of their absorption and emission spectrum with the concentration x. We use the single-particle energies and wave functions calculated from a multiband sp^3 empirical tight-binding model in combination with the configuration interaction scheme to calculate the optical properties of CdZnSe nanocrystals with a spherical shape. In contrast to common mean-field approaches like the virtual crystal approximation (VCA), we treat the disorder on a microscopic level by taking into account a finite number of realizations for each size and concentration. We then compare the results for the optical properties with recent experimental data and calculate the optical bowing coefficient for further sizes

    Nanophononics: state of the art and perspectives

    Full text link
    corecore