5,405 research outputs found

    Topological Phases of Sound and Light

    Get PDF
    Topological states of matter are particularly robust, since they exploit global features insensitive to local perturbations. In this work, we describe how to create a Chern insulator of phonons in the solid state. The proposed implementation is based on a simple setting, a dielectric slab with a suitable pattern of holes. Its topological properties can be wholly tuned in-situ by adjusting the amplitude and frequency of a driving laser that controls the optomechanical interaction between light and sound. The resulting chiral, topologically protected phonon transport along the edges can be probed completely optically. Moreover, we identify a regime of strong mixing between photon and phonon excitations, which gives rise to a large set of different topological phases. This would be an example of a Chern insulator produced from the interaction between two physically very different particle species, photons and phonons

    Entanglement Rate for Gaussian Continuous Variable Beams

    Get PDF
    We derive a general expression that quantifies the total entanglement production rate in continuous variable systems, where a source emits two entangled Gaussian beams with arbitrary correlators.This expression is especially useful for situations where the source emits an arbitrary frequency spectrum,e.g. when cavities are involved. To exemplify its meaning and potential, we apply it to a four-mode optomechanical setup that enables the simultaneous up- and down-conversion of photons from a drive laser into entangled photon pairs. This setup is efficient in that both the drive and the optomechanical up- and down-conversion can be fully resonant.Comment: 18 pages, 6 figure

    Fermionic Mach-Zehnder interferometer subject to a quantum bath

    Full text link
    We study fermions in a Mach-Zehnder interferometer, subject to a quantum-mechanical environment leading to inelastic scattering, decoherence, renormalization effects, and time-dependent conductance fluctuations. Both the loss of interference contrast as well as the shot noise are calculated, using equations of motion and leading order perturbation theory. The full dependence of the shot-noise correction on setup parameters, voltage, temperature and the bath spectrum is presented. We find an interesting contribution due to correlations between the fluctuating renormalized phase shift and the output current, discuss the limiting behaviours at low and high voltages, and compare with simpler models of dephasing.Comment: 5 pages, 3 figure

    Pattern phase diagram for 2D arrays of coupled limit-cycle oscillators

    Full text link
    Arrays of coupled limit-cycle oscillators represent a paradigmatic example for studying synchronization and pattern formation. They are also of direct relevance in the context of currently emerging experiments on nano- and optomechanical oscillator arrays. We find that the full dynamical equations for the phase dynamics of such an array go beyond previously studied Kuramoto-type equations. We analyze the evolution of the phase field in a two-dimensional array and obtain a "phase diagram" for the resulting stationary and non-stationary patterns. The possible observation in optomechanical arrays is discussed briefly

    Optomechanical creation of magnetic fields for photons on a lattice

    Get PDF
    We propose using the optomechanical interaction to create artificial magnetic fields for photons on a lattice. The ingredients required are an optomechanical crystal, i.e. a piece of dielectric with the right pattern of holes, and two laser beams with the right pattern of phases. One of the two proposed schemes is based on optomechanical modulation of the links between optical modes, while the other is an lattice extension of optomechanical wavelength-conversion setups. We illustrate the resulting optical spectrum, photon transport in the presence of an artificial Lorentz force, edge states, and the photonic Aharonov-Bohm effect. Moreover, wWe also briefly describe the gauge fields acting on the synthetic dimension related to the phonon/photon degree of freedom. These can be generated using a single laser beam impinging on an optomechanical array

    Hedge-Fonds: Heuschrecken des internationalen Finanzsystems?

    Full text link
    Die Ungleichgewichte auf den internationalen Finanzmärkten werden von den Finanzministern und Notenbankchefs der Industrieländer mit zunehmendem Unbehagen betrachtet. In Hinblick auf Hedge-Fonds soll bis zum G-8-Gipfel im Juni dieses Jahres ein Verhaltenskodex erarbeitet werden. Inwieweit können Hedge-Fonds zur Instabilität der Finanzmärkte beitragen? Welche Strategien zur Krisenvermeidung sollten verfolgt werden? Welche Institutionen sollten aktiv werden

    Dimensional Crossover of the Dephasing Time in Disordered Mesoscopic Rings: From Diffusive through Ergodic to 0D Behavior

    Full text link
    We analyze dephasing by electron interactions in a small disordered quasi-one dimensional (1D) ring weakly coupled to leads, where we recently predicted a crossover for the dephasing time \tPh(T) from diffusive or ergodic 1D (\tPh^{-1} \propto T^{2/3}, T^{1}) to 0D0D behavior (\tPh^{-1} \propto T^{2}) as TT drops below the Thouless energy \ETh. We provide a detailed derivation of our results, based on an influence functional for quantum Nyquist noise, and calculate all leading and subleading terms of the dephasing time in the three regimes. Explicitly taking into account the Pauli blocking of the Fermi sea in the metal allows us to describe the 0D0D regime on equal footing as the others. The crossover to 0D0D, predicted by Sivan, Imry and Aronov for 3D systems, has so far eluded experimental observation. We will show that for T \ll \ETh, 0D0D dephasing governs not only the TT-dependence for the smooth part of the magnetoconductivity but also for the amplitude of the Altshuler-Aronov-Spivak oscillations, which result only from electron paths winding around the ring. This observation can be exploited to filter out and eliminate contributions to dephasing from trajectories which do not wind around the ring, which may tend to mask the T2T^{2} behavior. Thus, the ring geometry holds promise of finally observing the crossover to 0D0D experimentally.Comment: in "Perspectives of Mesoscopic Physics - Dedicated to Yoseph Imry's 70th Birthday", edited by Amnon Aharony and Ora Entin-Wohlman (World Scientific, 2010), chap. 20, p. 371-396, ISBN-13 978-981-4299-43-

    GERMANY’S U-TURN IN ENERGY POLICY: HOW WILL IT AFFECT THE MARKET?

    Get PDF
    In Germany the performance of opening the electricity markets proves to be poor. While the sector’s productivity nearly doubled, the customers were left out in the cold. In actuality, the generated redistribution mass remained in the firms. There, the management used the threat of competition as an instrument for rationalisation and for the moderation of wage growth, while it simultaneously and successfully made an effort to circumvent the market competition. In the end, due to the established oligopolistic structures profits approximately quadrupled. However, at present there are indicators for a change in the market structures, brought about by a new political framework and the U-turn in Germany’s Energy Policies in the aftermath of Fukushima. This paper will analyse the market’s development based on the most recent data from Germany’s industry statistics. It also aims at explaining these findings and discussing the structural effects of the new environment

    The Solution to Dangerous Antibiotic-resistant Bacteria

    Get PDF
    • …
    corecore