55 research outputs found
Correlations of differentially expressed gap junction connexins cx26, cx30, cx32, cx43 and cx46 with breast cancer progression and prognosis.
BACKGROUND AND AIMS: Connexins and their cell membrane channels contribute to the control of cell proliferation and compartmental functions in breast glands and their deregulation is linked to breast carcinogenesis. Our aim was to correlate connexin expression with tumor progression and prognosis in primary breast cancers. MATERIALS AND METHODS: Meta-analysis of connexin isotype expression data of 1809 and 1899 breast cancers from the Affymetrix and Illumina array platforms, respectively, was performed. Expressed connexins were also monitored at the protein level in tissue microarrays of 127 patients equally representing all tumor grades, using immunofluorescence and multilayer, multichannel digital microscopy. Prognostic correlations were plotted in Kaplan-Meier curves and tested using the log-rank test and cox-regression analysis in univariate and multivariate models. RESULTS: The expression of GJA1/Cx43, GJA3/Cx46 and GJB2/Cx26 and, for the first time, GJA6/Cx30 and GJB1/Cx32 was revealed both in normal human mammary glands and breast carcinomas. Within their subfamilies these connexins can form homo- and heterocellular epithelial channels. In cancer, the array datasets cross-validated each other's prognostic results. In line with the significant correlations found at mRNA level, elevated Cx43 protein levels were linked with significantly improved breast cancer outcome, offering Cx43 protein detection as an independent prognostic marker stronger than vascular invasion or necrosis. As a contrary, elevated Cx30 mRNA and protein levels were associated with a reduced disease outcome offering Cx30 protein detection as an independent prognostic marker outperforming mitotic index and necrosis. Elevated versus low Cx43 protein levels allowed the stratification of grade 2 tumors into good and poor relapse free survival subgroups, respectively. Also, elevated versus low Cx30 levels stratified grade 3 patients into poor and good overall survival subgroups, respectively. CONCLUSION: Differential expression of Cx43 and Cx30 may serve as potential positive and negative prognostic markers, respectively, for a clinically relevant stratification of breast cancers
Leukodystrophies: a proposed classification system based on pathological changes and pathogenetic mechanisms
Leukodystrophies are genetically determined disorders characterized by the selective involvement of the central nervous system white matter. Onset may be at any age, from prenatal life to senescence. Many leukodystrophies are degenerative in nature, but some only impair white matter function. The clinical course is mostly progressive, but may also be static or even improving with time. Progressive leukodystrophies are often fatal, and no curative treatment is known. The last decade has witnessed a tremendous increase in the number of defined leukodystrophies also owing to a diagnostic approach combining magnetic resonance imaging pattern recognition and next generation sequencing. Knowledge on white matter physiology and pathology has also dramatically built up. This led to the recognition that only few leukodystrophies are due to mutations in myelin- or oligodendrocyte-specific genes, and many are rather caused by defects in other white matter structural components, including astrocytes, microglia, axons and blood vessels. We here propose a novel classification of leukodystrophies that takes into account the primary involvement of any white matter component. Categories in this classification are the myelin disorders due to a primary defect in oligodendrocytes or myelin (hypomyelinating and demyelinating leukodystrophies, leukodystrophies with myelin vacuolization); astrocytopathies; leuko-axonopathies; microgliopathies; and leuko-vasculopathies. Following this classification, we illustrate the neuropathology and disease mechanisms of some leukodystrophies taken as example for each category. Some leukodystrophies fall into more than one category. Given the complex molecular and cellular interplay underlying white matter pathology, recognition of the cellular pathology behind a disease becomes crucial in addressing possible treatment strategies
One-step synthesis of ZnO nanosheets: a blue-white fluorophore
Zinc oxide is synthesised at low temperature (80°C) in nanosheet geometry using a substrate-free, single-step, wet-chemical method and is found to act as a blue-white fluorophore. Investigation by atomic force microscopy, electron microscopy, and X-ray diffraction confirms zinc oxide material of nanosheet morphology where the individual nanosheets are polycrystalline in nature with the crystalline structure being of wurtzite character. Raman spectroscopy indicates the presence of various defects, while photoluminescence measurements show intense green (centre wavelength approximately 515 nm) blue (approximately 450 nm), and less dominant red (approximately 640 nm) emissions due to a variety of vacancy and interstitial defects, mostly associated with surfaces or grain boundaries. The resulting colour coordinate on the CIE-1931 standard is (0.23, 0.33), demonstrating potential for use as a blue-white fluorescent coating in conjunction with ultraviolet emitting LEDs. Although the defects are often treated as draw-backs of ZnO, here we demonstrate useful broadband visible fluorescence properties in as-prepared ZnO
- …