10 research outputs found
Efeito da fadiga cÃclica na resistência, crescimento subcrÃtico de trincas e tempo de vida de cerâmicas a base de alumina infiltradas por vidro
O objetivo foi avaliar (1) a influência da microestrutura e composição de cerâmicas a base de alumina e infiltrada por vidro (IA- In-Ceram Alumina, Vita) e com reforço de zircônia (IZ- In-Ceram Zircônia, Vita) no comportamento mecânico quanto à resistência a flexão e fadiga; e (2) o efeito das cargas cÃclicas na resistência (σ), crescimento subcrÃtico de trincas (CST) e tempo de vida (TV) desses materiais cerâmicos. Noventa corpos-de-prova (CP) (1.2 x 4 x 20 mm3) de cada material foram fabricados de acordo com ISO 6872 e instruções do fabricante. Os CP de IA e IZ foram divididos em 6 grupos (n=15), submetidos a: 1) flexão em três pontos em saliva artificial a 37°C (IA3P e IZ3P); e 2) fadiga cÃclica em ambiente seco e úmido (IAFS, IAFU, IZFS, IZFU). A resistência inicial (σc) e o número de ciclos nos quais cada CP fraturou foram obtidos a partir do ensaio de flexão (3P) e da fadiga cÃclica, respectivamente; e avaliados pela análise estatÃstica de Weibull. O CST foi calculado a partir da velocidade da trinca em função da intensidade máxima de estresse. Para estimar o TV foi utilizado o diagrama de Wöhler (DW). Os valores de σc (MPa) da IA variaram de 340 a 560, e do IZ de 410 a 660. O módulo de Weibull (m) foi 8 para ambas IA e IZ, e a resistência caracterÃstica (σ0) foi 550 MPa para IZ e 466 MPa para IA. O CST no IZ foi maior na presença de umidade. Baseados na σc e nos dados de fadiga, calculados com uma tensão máxima de 150 MPa, foi estimado em média, um TV de: IZFS= 1.57 x 108; IZFU= 1.70 x 107; IAFS= 1.75 x 106; e IAFU= 8.70 x 105 ciclos. Os CP de IZ apresentaram maiores valores de σc devido a presença de zircônia na sua composição e microestrutura. A partir do DW estimou-se que os materiais IA e IZ, têm uma probabilidade de falha de apenas 5% após 20 anos (10220000 ciclos), se a máxima tensão aplicada em meio úmido não exceder a 316MPa para IZ, e 264MPa para IA.The objective of this study was to evaluate (1) the influence of the microstructure and chemical composition on the flexural strength and fatigue of glass-infiltrated alumina-based (IA- In-Ceram Alumina) and zirconia-reinforced (IZ- In-Ceram Zirconia) ceramics; and (2) the effect of the cyclic loading on the strength (σ), subcritical crack growth (SCG) and lifetime (Lt) of these framework ceramics. Ninety specimens (sp)(1.2 x 4 x 20 mm3) were fabricated according to the ISO 6872 standard and manufacturer instructions. IA and IZ sp were divided into 6 groups (n=15) and submitted to: 1) 3-point bending test in artificial saliva at 37ºC (IA3P e IZ3P); 2) cyclic fatigue test under dry and wet conditions (IAFD, IAFW, IZFD, IZFW). The initial strength (σ) and the number of cycles until fracture were obtained from the 3-point bending and cyclic fatigue test, respectively; and evaluated using the Weibull distribution. The SCG was obtained from the velocity of crack propagation (v) with the stress intensity factor. The Lt was described using the Wöhler diagram (WD). The σ values (MPa) ranged from 340 to 560 and from 410 to 660 for IA and IZ, respectively. The Weibull moduli (m= 8) was found similar for both ceramics, and the characteristic mechanical strength (σ0) of IA and IZ was 550 MPa and 466 MPa, respectively. Based on the σ and the calculated fatigue data, using a maximum stress of 150 MPa, an average Lt was estimated as follows: IZFD=, 1.57 x 108; IZFW= 1.70 x 107; IAFD= 1.75 x 106; and IAFW= 8.70 x 105 cycles.. SCG was greater for IZ sp when they were tested in water; the presence of zirconia in the IZ resulted in greater mean σ and σ0 values for IZ than for IA. The WD estimated a probability of failure of only 5% after 20 years (10220000 cycles) for IA and IZ if the maximum applied stress in wet conditions does not exceed to 316 MPa and 264 MPa, respectively.Coordenação de Aperfeiçoamento de Pessoal de NÃvel Superior (CAPES
Altura de los tallados coronales en la retención de prótesis parcial fija
La altura y convergencia de las paredes axiales, el diámetro de los tallados, la presencia de surcos para mejorar la retención y el tipo de cemento son algunas de las condiciones que influencian el ajuste y la retención de las restauraciones fundidas. El objetivo de este trabajo fue verificar la relación de la cantidad de retención con el aumento gradual de la altura de los tallados coronales. Usando 11 troqueles y 11 cápsulas metálicas, fresados y perfectamente adaptados, con alturas desde 3mm hasta 8mm, con el aumento gradual de 0,5mm. Todas las capsuladas fueron cementadas de forma estandarizada y luego de 24 horas fueron sometidas a la prueba de tracción (EMIC - 1000). Los resultados mostraron que incrementos de 0,5mm en la altura del tallado aumentaron en promedio de 7N la resistencia a tracción de los cuerpos de prueba, por tal motivo se puedeconcluir que existe una influencia de la altura del tallado en la capacidad retentiva de los troqueles
Dental fluorosis : exposure, prevention and management
Dental fluorosis is a developmental disturbance of dental enamel, caused by successive exposures to high concentrations of fluoride during tooth development, leading to enamel with lower mineral content and increased porosity. The severity of dental fluorosis depends on when and for how long the overexposure to fluoride occurs, the individual response, weight, degree of physical activity, nutritional factors and bone growth. The risk period for esthetic changes in permanent teeth is between 20 and 30 months of age. The recommended level for daily fluoride intake is 0.05 - 0.07 mg F/Kg/day, which is considered of great help in preventing dental caries, acting in remineralization. A daily intake above this safe level leads to an increased risk of dental fluorosis. Currently recommended procedures for diagnosis of fluorosis should discriminate between symmetrical and asymmetrical and/or discrete patterns of opaque defects. Fluorosis can be prevented by having an adequate knowledge of the fluoride sources, knowing how to manage this issue and therefore, avoid overexposure
Thermocycling effect on microhardness of laboratory composite resins
Tha aim of this study was to evaluate the thermocycling effect on microhardness of laboratory composite resins, 30 disks were fabricated, 5mm of diameter and 2mm of width, using 3 laboratory resins: G1 (n=10) - RESILAB MASTER (Wilcos-Brasil), G2 (n=10) - Vita VMLC (VITA Zahnfabrik-Germany), and G3 (n=10) - Vita Zeta (VITA Zahnfabrik-Germany). Vickers microhardness (HV) of all specimens was evaluated using a microhardness tester FM-700 (Future Tech- 50 g/10s). The specimens were measured before and after the thermocycling (3,000 times and 12,000 times - 5°/55°C±1). The microhardness values before cycling were (mean±SD): G1: 55.50±4.6; G2: 35.54±2.5; G3: 27.97±1.6; after 3,000 thermocycles: G1: 55.54±3.9; G2: 29.92±2.73; G3:21.01±1.4 and after 12,000 cycles G1: 54.27±3.2; G2: 30.91±1.6; G3: 23.81±0.9. Variance analysis (ANOVA) and Tukey's test was accomplished (p<0.05), the highest microhardness values were observed in G1: G2 and G3 showed reduction of microhardness values. It was concluded that, after thermocycling, the tested laboratory composites resins are susceptible to the decrease of surface microhardness
Thermocycling effect on microhardness of laboratory composite resins
The aim of this study was to evaluate the thermocycling effect on
microhardness of laboratory composite resins. 30 disks were fabricated,
5 mm of diameter and 2mm of width, using 3 laboratory resins: G1 (n=10)
- RESILAB MASTER (Wilcos-Brasil), G2 (n=10) - Vita VMLC (VITA
Zahnfabrik-Germany), and G3 (n=10) - Vita Zeta (VITA
Zahnfabrik-Germany). Vickers microhardness (HV) of all specimens was
evaluated using a microhardness tester FM-700 (Future Tech- 50 g/10s).
The specimens were measured before and after the thermocycling (3.000
times and 12.000 times - 5° /55°C±1). The microhardness
values before cycling were (mean±SD): G1: 55.50±4.6; G2:
35.54±2.5; G3: 27.97±1.6.; after 3.000 thermocycles: G1:
55.54±3,9; G2: 29.92±2,73; G3:21.01±1.4 and after 12.000
cycles G1:54.27±3.2; G2: 30.91±1.6. G3: 23.81±0.9.
Variance analysis (ANOVA) and Tukey's test was accomplished
(p<0,05), the highest microhardness values were observed in G1; G2
and G3 showed reduction of microhardness values. It was concluded that,
after thermocycling, the tested laboratory composites resins are
susceptible to the decrease of surface microhardness
Thermocycling effect on microhardness of laboratory composite resins
of this study was to evaluate the thermocycling effect on microhardness of laboratory composite resins. 30 disks were fabricated, 5 mm of diameter and 2mm of width, using 3 laboratory resins: G1 (n=10) - RESILAB MASTER (Wilcos-Brasil), G2 (n=10) - Vita VMLC (VITA Zahnfabrik-Germany), and G3 (n=10) - Vita Zeta (VITA Zahnfabrik-Germany). Vickers microhardness (HV) of all specimens was evaluated using a microhardness tester FM-700 (Future Tech- 50 g/10s). The specimens were measured before and after the thermocycling (3.000 times and 12.000 times - 5° /55°C±1). The microhardness values before cycling were (mean±SD): G1: 55.50±4.6; G2: 35.54±2.5; G3: 27.97±1.6.; after 3.000 thermocycles: G1: 55.54±3,9; G2: 29.92±2,73; G3:21.01±1.4 and after 12.000 cycles G1:54.27±3.2; G2: 30.91±1.6. G3: 23.81±0.9. Variance analysis (ANOVA) and Tukeys test was accomplished (p<0,05), the highest microhardness values were observed in G1; G2 and G3 showed reduction of microhardness values. It was concluded that, after thermocycling, the tested laboratory composites resins are susceptible to the decrease of surface microhardness
REFORZAMIENTO OCLUSAL ESTÉTICO EN PRÓTESIS TOTALES
Este trabajo tuvo como objetivo presentar una técnica de recubrimiento oclusal en prótesis totalesutilizando uan resina compuesta de uso en laboratorio, con el propósito de optimizar la relación oclusal,prolongar la vida útil de las prótesis y ofrecer mejor estética comparado al recubrimiento metálico coneficiencia masticatoria similar.Abstract The aim of this research was to describe a method of oclusal recovery in complete dentures with an indirect resin composite in order to improve occlusion, to prolong clinical longevity and offer a betteresthetic compared to metallic recovery but with similar function
Effect of seating forces on cement-ceramic adhesion in microtensile bond tests
OBJECTIVES: The aim of this study was to evaluate the effect of different seating forces during cementation in cement-ceramic microtensile bond strength (μTBS).
MATERIALS AND METHODS: Forty-five blocks (5 × 5 × 4 mm(3)) of a glass-infiltrated alumina-based ceramic (In-Ceram Alumina) were fabricated according to the manufacturer's instructions and duplicated in resin composite. Ceramic surfaces were polished, cleaned for 10 min in an ultrasonic bath, silica coated using a laboratory type of air abrasion device, and silanized. Each treated ceramic block was then randomly assigned to five groups (n = 9) and cemented to a composite block under five seating forces (10 g, 50 g, 100 g, 500 g, and 750 g) using a dual-cured resin cement (Panavia F). The ceramic-cement-composite assemblies were cut under coolant water to obtain bar specimens (1 mm × 0.8 mm(2)). The μTBS tests were performed in a universal testing machine (1 mm/min). The mean bond strengths values were statistically analyzed using one-way ANOVA (α ≤ 0.05).
RESULTS: Different seating forces resulted in no significant difference in the μTBS results ranging between 13.1 ± 4.7 and 18.8 ± 2.1 MPa (p = 0.13) and no significant differences among cement thickness.
CONCLUSIONS: Excessive seating forces during cementation seem not to affect the μTBS results.
CLINICAL RELEVANCE: Excessive forces during the seating of single all-ceramic restorations cementation seem to display the same tensile bond strength to the resin cement