21 research outputs found
Neuroendocrine and immune contributors to fatigue
Central fatigue, a persistent and subjective sense of tiredness, generally correlates poorly with traditional markers of disease. It is frequently associated with psychosocial factors, such as depression, sleep disorder, anxiety, and coping style, which suggest that dysregulation of the body's stress systems may serve as an underlying mechanism in the maintenance of chronic fatigue (CF). This article addresses the endocrine, neural, and immune factors that contribute to fatigue and describes research regarding the role of these factors in chronic fatigue syndrome as a model for addressing the biology of CF. In general, hypoactivity of the hypothalamic-pituitary-adrenal axis, autonomic nervous system alterations characterized by sympathetic overactivity and low vagal tone, as well as immune abnormalities, may contribute to the expression of CF. Noninvasive methods for evaluating endocrine, neural, and immune function are also discussed. Simultaneous evaluation of neuroendocrine and immune systems with noninvasive techniques will help elucidate the underlying interactions of these systems, their role in disease susceptibility, and progression of stress-related disorders
Recommended from our members
Biallelic variants in ribonuclease inhibitor (RNH1), an inflammasome modulator, are associated with a distinctive subtype of acute, necrotizing encephalopathy
Mendelian etiologies for acute encephalopathies in previously healthy children are poorly understood, with the exception of RAN binding protein 2 (RANBP2)–associated acute necrotizing encephalopathy subtype 1 (ANE1). We provide clinical, genetic, and neuroradiological evidence that biallelic variants in ribonuclease inhibitor (RNH1) confer susceptibility to a distinctive ANE subtype.
This study aimed to evaluate clinical data, neuroradiological studies, genomic sequencing, and protein immunoblotting results in 8 children from 4 families who experienced acute febrile encephalopathy.
All 8 healthy children became acutely encephalopathic during a viral/febrile illness and received a variety of immune modulation treatments. Long-term outcomes varied from death to severe neurologic deficits to normal outcomes. The neuroradiological findings overlapped with ANE but had distinguishing features. All affected children had biallelic predicted damaging variants in RNH1: a subset that was studied had undetectable RNH1 protein. Incomplete penetrance of the RNH1 variants was evident in 1 family.
Biallelic variants in RNH1 confer susceptibility to a subtype of ANE (ANE2) in previously healthy children. Intensive immunological treatments may alter outcomes. Genomic sequencing in children with unexplained acute febrile encephalopathy can detect underlying genetic etiologies, such as RNH1, and improve outcomes in the probands and at-risk siblings
Recommended from our members
Loss-of-function in RBBP5 results in a syndromic neurodevelopmental disorder associated with microcephaly
Epigenetic dysregulation has been associated with many inherited disorders. RBBP5 (HGNC:9888) encodes a core member of the protein complex that methylates histone 3 lysine-4 (H3K4) and has not been implicated in human disease.
We identify five unrelated individuals with de novo heterozygous variants in RBBP5. Three nonsense/frameshift and two missense variants were identified in probands with neurodevelopmental symptoms including global developmental delay, intellectual disability, microcephaly, and short stature. Here, we investigate the pathogenicity of the variants through protein structural analysis and transgenic Drosophila models.
Both missense p.(T232I) and p.(E296D) variants affect evolutionarily conserved amino acids located at the interface between RBBP5 and the nucleosome. In Drosophila, overexpression analysis identifies partial loss-of-function mechanisms when the variants are expressed using the fly Rbbp5 or human RBBP5 cDNA. Loss of Rbbp5 leads to a reduction in brain size. The human reference or variant transgenes fail to rescue this loss and expression of either missense variant in an Rbbp5 null background results in a less severe microcephaly phenotype than the human reference, indicating both missense variants are partial loss-of-function alleles.
Haploinsufficiency of RBBP5 observed through de novo null and hypomorphic loss-of-function variants is associated with a syndromic neurodevelopmental disorder.
Huang et al. report the first functional validation of candidate pathological variants in RBBP5. We present three truncating p.(K244Nfs*6), p.(W254*), p.(R307*) and two missense p.(T232I), p.(E296D) variants found de novo in affected individuals sharing phenotypes including microcephaly and short stature. RBBP5 is a core member of the COMPASS complex responsible for H3 lysine 4 methylation to activate developmental target genes (COMPASS complex adapted from Namitz et al., 2023). Differentiation of neural stem cells in humans and neuroblasts in Drosophila is conserved allowing for the study of neural development in the fly model organism (neural stem cell/neuroblast differentiation diagram adapted from Kim and Hirth, 2009). We used overexpression and rescue experiments to characterize the missense variants in the fly. Neural progenitor populations were evaluated in the larval brain and tissue specific phenotypes were quantified using adult eye and wing morphology studies. We identify that the truncating and missense variants are loss-of-function alleles. As additional patients are identified, the full phenotypic spectrum of RBBP5-related disorders will be elucidated. Created with Biorender.com. [Display omitted
Recommended from our members