10,275 research outputs found
Dynamical Coarse-Graining of Highly Fluctuating Membranes under Shear Flow
The effect of strong shear flow on highly fluctuating lamellar systems
stabilized by intermembrane collisions via the Helfrich interaction is studied.
Advection enters the microscopic equation of motion for a single membrane via a
non-linear coupling. Upon coarse-graining the theory for a single bilayer up to
the length scale of the collision length, at which a hydrodynamic description
applies, an additional dynamical coupling is generated which is of the form of
a wavevector-dependent tension that is non-linear in the applied shear rate.
This new term has consequences for the effects of strong flow on the stability
and dynamics of lamellar surfactant phases.Comment: 17 pages, 6 figure, submitted to Phys Rev
NICMOS and VLBA observations of the gravitational lens system B1933+503
NICMOS observations of the complex gravitational lens system B1933+503 reveal
infrared counterparts to two of the inverted spectrum radio images. The
infrared images have arc-like structures. The corresponding radio images are
also detected in a VLBA map made at 1.7 GHz with a resolution of 6 mas. We fail
to detect two of the four inverted radio spectrum components with the VLBA even
though they are clearly visible in a MERLIN map at the same frequency at a
different epoch. The absence of these two components could be due to rapid
variability on a time-scale less than the time delay, or to broadening of the
images during propagation of the radio waves through the ISM of the lensing
galaxy to an extent that they fall below the surface brightness detectability
threshold of the VLBA observations. The failure to detect the same two images
with NICMOS is probably due to extinction in the ISM of the lensing galaxy.Comment: 5 pages, 4 figures, submitted to MNRA
The Effect of Shear Flow on the Helfrich Interaction in Lyotropic Lamellar Systems
We study the effect of shear flow on the entropic Helfrich interaction in
lyotropic surfactant smectic fluids. Arguing that flow induces an effective
anisotropic surface tension in bilayers due to a combination of intermonolayer
friction, bilayer collisions and convection, we calculate the reduction in
fluctuations and hence the renormalised change in effective compression modulus
and steady-state layer spacing. We demonstrate that non-permeable or slowly
permeating membranes can be susceptible to a undulatory instability of the
Helfrich-Hurault type, and speculate that such an instability could be one
source of a transition to multilamellar vesicles.Comment: 14 pages, to appear in Eur Phys J
CFHT AO Imaging of the CLASS Gravitational Lens System B1359+154
We present adaptive optics imaging of the CLASS gravitational lens system
B1359+154 obtained with the Canada-France-Hawaii Telescope (CFHT) in the
infrared K band. The observations show at least three brightness peaks within
the ring of lensed images, which we identify as emission from multiple lensing
galaxies. The results confirm the suspected compound nature of the lens, as
deduced from preliminary mass modeling. The detection of several additional
nearby galaxies suggests that B1359+154 is lensed by the compact core of a
small galaxy group. We attempted to produce an updated lens model based on the
CFHT observations and new 5-GHz radio data obtained with the MERLIN array, but
there are too few constraints to construct a realistic model at this time. The
uncertainties inherent with modeling compound lenses make B1359+154 a
challenging target for Hubble constant determination through the measurement of
differential time delays. However, time delays will offer additional
constraints to help pin down the mass model. This lens system therefore
presents a unique opportunity to directly measure the mass distribution of a
galaxy group at intermediate redshift.Comment: 12 pages including 3 figures; ApJL accepte
Lensing galaxies: light or dark?
In a recent paper, Hawkins (1997) argues on the basis of statistical studies
of double-image gravitational lenses and lens candidates that a large
population of dark lenses exists and that these outnumber galaxies with more
normal mass-to-light ratios by a factor of 3:1. If correct, this is a very
important result for many areas of astronomy including galaxy formation and
cosmology. In this paper we discuss our new radio-selected gravitational lens
sample, JVAS/CLASS, in order to test and constrain this proposition. We have
obtained ground-based and HST images of all multiple-image lens systems in our
sample and in 12 cases out of 12 we find the lensing galaxies in the optical
and/or near infrared. Our success in finding lensing galaxies creates problems
for the dark lens hypothesis. If it is to survive, ad hoc modifications seem to
be necessary: only very massive galaxies (more than about one trillion solar
masses) can be dark, and the cutoff in mass must be sharp. Our finding of lens
galaxies in all the JVAS/CLASS systems is complementary evidence which supports
the conclusion of Kochanek et al. (1997) that many of the wide-separation
optically-selected pairs are physically distinct quasars rather than
gravitational lens systems.Comment: 4 pages, 2 included figures, accepted for publication in Astronomy
and Astrophysics. Paper version available on request. This replacement amends
the text to allow more discussion of the overlap with astro-ph/971016
Redshifts of CLASS Radio Sources
Spectroscopic observations of a sample of 42 flat-spectrum radio sources from
the Cosmic Lens All-Sky Survey (CLASS) have yielded a mean redshift of with an RMS spread of 0.95, at a completeness level of 64%. The sample
consists of sources with a 5-GHz flux density of 25-50 mJy, making it the
faintest flat-spectrum radio sample for which the redshift distribution has
been studied. The spectra, obtained with the Willam Herschel Telescope (WHT),
consist mainly of broad-line quasars at and narrow-line galaxies at
. Though the mean redshift of flat-spectrum radio sources exhibits
little variation over more than two orders of magnitude in radio flux density,
there is evidence for a decreasing fraction of quasars at weaker flux levels.
In this paper we present the results of our spectroscopic observations, and
discuss the implications for constraining cosmological parameters with
statistical analyses of the CLASS survey.Comment: 10 pages, AJ accepte
Gravitational lensing statistics with extragalactic surveys. II. Analysis of the Jodrell Bank-VLA Astrometric Survey
We present constraints on the cosmological constant from
gravitational lensing statistics of the Jodrell Bank-VLA Astrometric Survey
(JVAS). Although this is the largest gravitational lens survey which has been
analysed, cosmological constraints are only comparable to those from optical
surveys. This is due to the fact that the median source redshifts of JVAS are
lower, which leads to both relatively fewer lenses in the survey and a weaker
dependence on the cosmological parameters. Although more approximations have to
be made than is the case for optical surveys, the consistency of the results
with those from optical gravitational lens surveys and other cosmological tests
indicate that this is not a major source of uncertainty in the results.
However, joint constraints from a combination of radio and optical data are
much tighter. Thus, a similar analysis of the much larger Cosmic Lens All-Sky
Survey should provide even tighter constraints on the cosmological constant,
especially when combined with data from optical lens surveys.
At 95% confidence, our lower and upper limits on ,
using the JVAS lensing statistics information alone, are respectively -2.69 and
0.68. For a flat universe, these correspond to lower and upper limits on
\lambda_{0} of respectively -0.85 and 0.84. Using the combination of JVAS
lensing statistics and lensing statistics from the literature as discussed in
Quast & Helbig (Paper I) the corresponding values are
-1.78 and 0.27. For a flat universe, these correspond to lower and upper limits
on of respectively -0.39 and 0.64.Comment: LaTeX, 9 pages, 18 PostScript files in 6 figures. Paper version
available on request. Data available from
http://gladia.astro.rug.nl:8000/ceres/data_from_papers/papers.htm
Characterisation of bulk water samples from copper pipes undergoing microbially influenced corrosion by diagnostic metabolomic profiling
This paper presents the application of metabolomic techniques to determine the presence of microbial influenced corrosion (MIC). In a previous study, the extracellular metabolites expressed from pipe biofilm was identified by analysing the passing water. This investigation extends this work by successfully applying a chemometric statistical analysis to the extracellular metabolomic profile of a number of water samples to identify critical metabolomic biomarkers. The chemometric analysis was able to differentiate samples due to a reduction of carboxylic acids in samples exposed to bacteria believed to cause MIC
Educational outcomes in extremely preterm children : neuropsychological correlates and predictors of attainment
This study assessed the impact of extremely preterm birth on academic attainment at 11 years of
age, investigated neuropsychological antecedents of attainment in reading and mathematics, and
examined early predictors of educational outcomes. Children born extremely preterm had significantly
poorer academic attainment and a higher prevalence of learning difficulties than their term
peers. General cognitive ability and specific deficits in visuospatial skills or phoneme deletion at 6
years were predictive of mathematics and reading attainment at 11 years in both extremely preterm
and term children. Phonological processing, attention, and executive functions at 6 years were also
associated with academic attainment in children born extremely preterm. Furthermore, social factors,
neonatal factors (necrotizing enterocolitis, breech delivery, abnormal cerebral ultrasound, early
breast milk provision), and developmental factors at 30 months (head circumference, cognitive development),
were independent predictors of educational outcomes at 11 years. Neonatal complications
combined with assessments of early cognitive function provide moderate prediction for educational
outcomes in children born extremely preterm
- …
