20 research outputs found

    Overview and Research Needs to Achieve Improved Understanding of Earthquake Hazards Affecting the Western Sumatra Coast

    Get PDF
    Natural hazards that are affecting humans are mostly related to geological processes, for example earthquake, volcanic eruption, flooding and landslide. The geological processes itself is a naturally occurring event, it is only become hazardous in the presence of humans as it may cause loss of life and properties. Understanding aspects of geological-related hazards of a region is important to reduce the danger they may pose. Indonesia is located within an active and complicated tectonic setting. Three major tectonic plates: Eurasia, Indo-Australia and Philippine are collide and interact in the vicinity of Indonesia. The mechanism of plate interaction in Indonesia is dominated by subduction, where one plate is subducted beneath the other. The subduction processes are commonly associated with formation of volcanoes as well as active deformation in the crust associated with earthquakes

    Updated Segmentation Model of the Aceh Segment of the Great Sumatran Fault System in Northern Sumatra, Indonesia

    Get PDF
    We study the Aceh Fault segment, the northernmost segment of the Great Sumatran Fault in western Indonesia. The Aceh Fault segment spans 250 km long, passing through three districts: West Aceh, Pidie Jaya, and Aceh Besar, a region of ~546,143 population. The current segmentation model assumes that the Aceh Fault segment acts as a single fault segment, which would generate closer to an M8 earthquake. This estimation is inconsistent with the ~M6–7 historical earthquake data. We conduct a detailed active fault mapping using an ~8 m resolution digital elevation model (DEM) of DEMNAS and sub-m DEM data from UAV-based photogrammetry to resolve this fault’s segmentation model. Our study indicates that the Aceh Fault is active and that the fault segment can be further divided into seven sub-segments: Beutong, Kuala Tripa, Geumpang, Mane, Jantho, Indrapuri, and Pulo Aceh. The fault kinematics identified in the field is consistent with right-lateral faulting. Our study’s findings provide new information to understand the fault geometry and estimate potential earthquakes’ maximum magnitude along the Aceh Fault segment. These are important for the development of seismic hazard analysis of the area

    Subsurface Geology and Hydrothermal Alteration of The “X” Geothermal Field, West Java: A Progress Report

    Get PDF
    “X” geothermal field is one of the geothermal fields in West Java. PT. Y (Persero) developed it since 2014. The geothermal field has produced electricity, with installed capacity amounted to 55 MWe. The “X” geothermal system is vapor-dominated. The geothermal manifestations are located at approximately 2,100 m asl. The “X” field consists of three main upflow zones: Kawah Putih, Kawah Ciwidey, and Kawah Cibuni. This study analyzed the drill cuttings from 3 wells as the primary data with total depths ranging from 1,581 to 2,166 m with the well’s highest stable temperatures measured of ±230°C. The three wells selected for this research—Well A, Well B, and Well C—were analyzed to describe the rock properties and estimate the prospect areas of present-day geothermal exploration in the “X” geothermal field.The paper aims to understand better of the subsurface geology and its correlation to the dynamic processes (i.e., hydrothermal alteration) in the “X” geothermal field. The hydrothermal minerals are formed by near-neutral pH fluids and are characterized by quartz, calcite, clays (smectite, illite, chlorite), wairakite, epidote, and actinolite. Acidic fluids are evident by forming acidic hydrothermal mineral, e.g., anhydrite at various depths of the studied wells, particularly at Well C which is located around Sugihmukti-Urug area. Moreover, the previous studies by Reyes (1990), Layman and Soemarinda (2003), Rachmawati et al. (2016), Elfina (2017) on hydrothermal minerals, geothermal manifestation characteristics, fluid geochemistry, and conceptual model are adapted to improve the analysis and interpretation of this paper

    A conjugate fault revealed by the destructive Mw 5.6 (November 21, 2022) Cianjur earthquake, West Java, Indonesia

    Get PDF
    On 21 November 2022, a destructive earthquake (Mw 5.6) struck Cianjur, West Java, Indonesia, resulting in at least 321 deaths, damage to 47,000 buildings, and economic losses of up to 7.7 trillion Indonesian Rupiahs (∌US $546 million). Prior to this earthquake, the fault on which slip occurred had not been mapped, thus making further analysis crucial for assessing future seismic hazard in the region. We constructed a detailed earthquake catalogue, which spanned the period from 10 days before to 48 days after the mainshock, using waveform migration and stacking, followed by relative relocation using a double-difference method. Source mechanisms for selected aftershocks were estimated using waveform inversion. Our results show three clear foreshocks preceding the mainshock, while the aftershocks reveal the presence of a conjugate fault pair trending NNW-SSE with a length of ∌8 km and WSW-ENE with a length of ∌5 km. Directivity analysis highlights bilateral rupture of the main shock toward N20°E and N200°E, although based on the focal mechanism solutions, it is likely that there was some slip on the conjugate fault. Analysis of the Coulomb stress change induced by the mainshock shows that areas to the NNW and WSW experienced an increase in stress, consistent with the observed aftershock pattern. The nearby fault to the south (the Rajamandala Fault) experienced an increase in stress, which likely elevates the risk of it rupturing in the future.publishedVersio

    Pemanfaatan Metode Fotogrametri dalam Pemetaan Geomorfologi Detail untuk Memahami Dinamika Teras Sungai Progo di Kecamatan Sentolo, Kabupaten Kulon Progo, D.I. Yogyakarta

    No full text
    Bukti adanya aktifitas tektonik aktif seringkali bisa kita amati dengan adanya morfologi yang khas. Untuk daerah yang memiliki iklim basah seperti di Indonesia, bentukan morfologi umumnya didominasi oleh proses fluviatil dimana sungai memiliki peran yang besar sehingga sungai umum dijumpai di seluruh wilayah Indonesia. Seringkali, berbagai peristiwa tektonik akan tercermin di dalam morfologi sungai yang unik. Salah satu keunikan morfologi sungai yang bisa diamati adalah pada sepanjang aliran Sungai Progo yang berada di wilayah Sentolo, Kabupaten Kulon Progo, D.I. Yogyakarta. Pada lokasi ini dijumpai morfologi sungai yang berupa teras – teras sungai yang berada lebih tinggi dari sungai aktif, akan tetapi hanya pada salah satu sisi sungainya saja (membentuk non-paired terraces). Kenampakan morfologi yang khas ini dapat diamati pada citra dan foto udara daerah tersebut yang mengindikasikan adanya kontrol endogenik. Sungai Progo pada lokasi ini merupakan bedrock terraces, dimana arah aliran sungai tidak mengikuti bidang perlapisan, hal ini menandakan Sungai Progo memiliki stream power yang cukup besar sehingga perlu faktor yang cukup besar untuk bisa merubah aliran sungai. Di dalam penelitian ini, kami melakukan pemetaan geomorfologi detail untuk mengetahui geometri teras-teras sungai yang terbentuk di daerah ini. Kami menerapkan metode fotogrametri menggunakan stereoskop untuk proses analisa morfologi teras Sungai Progo pada daerah penelitian. Kami mengidentifikasi setidaknya terdapat dua teras Sungai Progo. Keberadaan teras-teras sungai ini hanya dijumpai pada lokasi ini dan tidak di bagian Sungai Progo yang lain. Kami menginterpretasikan bahwa terbentuknya teras-teras sungai ini kemungkinan besar dikontrol oleh proses tektonik berupa pengangkatan lokal akibat pensesaran di daerah ini. Aktifitas tektonik pengangkatan dapat mengubah base level sungai sehingga proses erosi vertikal menjadi dominan. Untuk mengetahui keberadaan sesar yang mengontrol dinamika sungai Progo di daerah ini diperlukan penyelidikan yang lebih lanjut

    Identifikasi Sesar Aktif di Pulau Bali dengan Menggunakan Data Pemetaan Geologi Permukaan dan Morfologi Tektonik

    No full text
    Pulau Bali dan sekitarnya berada dekat dengan zona subduksi sehingga rawan terhadap bencana gempa bumi. Struktur utama yang menyebabkan gempa bumi di Bali umumnya berada di zona subduksi di bagian selatan dan di zona sesar naik belakang busur di utara yang dikenal dengan sesar naik Flores. Selain potensi gempa dari kedua zona sesar ini, gempa yang berasal dari zona sesar di darat juga bisa menimbulkan bahaya yang signifikan. Penelitian ini bertujuan untuk melakukan pemetaan sesar aktif di darat dengan menggunakan kombinasi antara metode penginderaan jauh dengan survey lapangan. Data yang digunakan sebagai peta dasar adalah data digital elevation (DEM) model DEMNAS beresolusi 8 m serta data DEM beresolusi 0.5 m yang dihasilkan melalui proses fotogrametri dari foto udara. Analisis kelurusan menunjukkan adanya pola berarah baratlaut-tenggara dan timulaut-baratdaya. Validasi di lapangan menunjukkan bahwa kelurusan ini berasosiasi dengan keberadaan sesar-sesar geser, sesar oblique dan sesar turun. Sesar-sesar ini memotong batuan berumur Kuarter hingga endapan masa kini. Selain itu, data sebaran seismisitas menunjukkan adanya zona kegempaan dangkal yang berada pada area di sekitar kelurusan yang dipetakan. Kedua indikator ini menunjukkan bahwa sesar-sesar yang teridentifikasi dalam penelitian ini bisa dikategorikan sebagai sesar aktif. Hasil dari penelitian ini memberikan pemahaman baru mengenai geometri sesar aktif yang ada di Pulau Bali dan potensi kegempaan di masa yang akan datang yang memberikan kontribusi terhadap upaya mitigasi bencana gempa bumi di Pulau Bali. Bali and its surrounding region are located within proximity of the Sunda-Banda subduction zone making it prone to earthquake hazards. The structures that caused earthquakes in Bali are mainly from the front subduction faults and from the back-arc thrust fault known as the Flores Fault. In addition, earthquakes are frequently occur in the inland fault system. This study aims to map the inland active faults in Bali using a combination of remotely-based and field-mapping methods. We use the 8-m resolution digital elevation model (DEM) of DEMNAS and the 0.5 m resolution DEM from photogrammetry processing of aerial photo as our base maps. Our lineament analysis identifies northwest-southeast and northeast-southwest lineaments. Our field observation confirms these lineaments to be associated with strike-slip, oblique and normal faults. These faults dissect Quarternary to recent rock units. In addition, seismicity data indicate the occurrence of shallow earthquakes in the vicinity of these structures. All of these indicate that these structures are active. Results from this study provide a new understanding of the inland active fault geometry in Bali, useful in the seismic hazard analysis and may contribute to the earthquake mitigation efforts in Bali.  

    Penggunaan Sandbox Analog Model Sebagai Sarana Edukasi Geologi Struktur dan Tektonik di Laboratorium Geologi Dinamik, Departemen Teknik Geologi, Fakultas Teknik, Universitas Gadjah Mada

    No full text
    Instrumen sandbox analog model telah banyak diaplikasikan untuk mendemonstrasikan serta memodelkan fenomena struktur geologi di alam. Laboratorium Geologi Dinamik, Departemen Teknik Geologi FT-UGM, membangun instrumen tersebut sebagai sarana edukasi geologi struktur dan tektonik bagi mahasiswa serta untuk keperluan riset. Instrumen yang dibuat khusus dirancang untuk memodelkan tektonik kompresi. Instrumen ini memiliki beberapa komponen utama yaitu: motor penggerak, dinding kaca, sebuah passive backstop, dan lembar mylar. Setting dari model analog ini menggunakan prinsip dimana lembar mylar diletakkan pada alas sandbox dan ditarik oleh motor penggerak. Pada bagian atas mylar tersebut diletakkan lapisan pasir lepas (diayak secara homogen), pasir ini akan mengikuti pergerakan lembaran mylar hingga berbenturan dengan passive backstop dan membentuk strukturstruktur kompresional. Dinding sandbox yang terbuat dari kaca transparan memungkinkan observasi pembentukan dan perkembangan sekuen sesar dan struktur lainnya dari atas dan dari samping. Hasil pengamatan ini kemudian dapat digunakan untuk analisa lebih lanjut mengenai proses deformasi dan akomodasi stress. Instrumen ini juga dapat dimodifikasi untuk memodelkan pembentukan sabuk sesar anjak dengan kemiringan alas tertentu serta pembentukan prisma akresi pada batas lempeng dengan geometri tertentu, sesuai dengan kondisi yang dapat diamati di alam. Hasil dari pemodelan dengan instrumen ini selanjutnya dapat dibandingkan dengan fenomena struktur dan tektonik di alam. Dalam presentasi ini kami memberikan contoh pemodelan untuk memperagakan pembentukan sabuk lipatan dan sesar anjak. Dengan menerapkan penggunaan sandbox analog model dalam proses pembelajaran, kami harapkan mahasiswa dapat memperoleh gambaran yang lebih jelas tentang proses pembentukan dan perkembangan fenomena struktur hasil dari proses tektonik, khususnya pada tektonik kompresi. Kata Kunci : Instrumen, Sandbox Analog Model, Sabuk Lipatan dan Sesar Anjak, Struktur Geologi dan Tektonik, Edukas

    Recent faulting along Gorontalo fault based on seismicity data analysis and lineament mapping

    No full text
    We focused our study to characterize the geometry and activity of Gorontalo fault. We analysed reviewed the ISC seismic catalogue and the BMKG relocated earthquake events available for the time period of 1960 to 2021, located along the expected location of this fault. In addition, we analysed continuous record from local seismic observatory available for the same period. Further, we mapped the lineaments using 8.3-m resolution DEMNAS data. Tens on shallow earthquakes occurred in the vicinity of this fault with a range magnitude of M 2 to 3. Our lineament analysis however does not reveal distinctive pattern that may indicate the fault manifestation at the surface. The NW-SE trending lineaments are coincidence with the mapped trace of Gorontalo Fault. The weak surface manifestation of the fault scarp may be related to the tropical climatic condition of the area which may obliterate the faulting topography. However, we observed alignment of the seismicity distribution with the mapped NW-SE lineament, indicating that the lineament is likely representing active fault and these earthquakes are associated with faulting along this fault. Our study provide indication that the Gorontalo Fault is active and further study is necessary to investigate subsurface geometry and mitigate its seismic hazards

    Merawat Ingatan : Bencana Alam dan Kearifan Lokal di Pulau Jawa

    No full text
    156 hlm, 25 c
    corecore