38 research outputs found

    Seabed Biodiversity Shifts Identify Climate Regimes: The 2011 Climate Regime Shift and Associated Cascades

    Get PDF
    Using search programs for a long-term SCUBA taxonomic database (3865 dives) for Strait of Georgia seabed sites, 1077 taxa were screened to select rare or highly abundant taxa and to present the data according to climate regime categories. Ocean Niño Index (ONI) climate regime shifts are defined here as the year of the end of the first La Niña closely paired with an El Niño by ≤2 months separation, where anomalies for both El Niño and La Niña exceed 1.0 on the ONI scale. For both rare and abundant taxa, patterns of increased or decreased abundance frequently correspond to years defining climate regimes. Cascading effects of climate regime shifts may occur via changes in community composition. The sea star wasting disease (SSWD) syndrome eliminated urchin predators so that urchins have decreased abundance of a kelp species that is nursery habitat for spot prawns. We conclude that 2011 was a climate regime shift. This 2011 regime shift coincided with loss of 11 seabed species in the Strait of Georgia, none of them at their southern range extreme

    Formation, Persistence, and Recovery of Glass Sponge Reefs: A Case Study

    Get PDF
    Glass sponge reefs (bioherms) are known to occur on glacial deposits but have not previously been observed to develop on fjord bedrock ridges. It is assumed that sexual reproduction dominates reef recruitment and that sedimentation can cover intact sponge skeletons. Over a decade of scuba diving research at a small fjordic bioherm, including installation of bar-coded marker stakes, transplants of loose fragments and survey transects of substrate depth with an avalanche probe have led to new insights into the dynamics of bioherm formation and persistence. We present evidence for recovery of sponge growth from scree slopes of collapsed fragments and logged the temporal changes associated with sponge fragmentation and recovery. Bar-coded stakes were installed in 2014 to enable verification of location and sponge identity through time. Photo documentation of growth, collapse, and regrowth is presented. Research on a sponge garden on glacial sediments reveals that earliest sedimentation may center around prostrate boot sponges and bristly tunicates among the cloud and vase sponges. Although hexactinellid boot sponges do not contribute to the geologic base of bioherms, they may take part as a successional community in the substrate conditioning that could result in the genesis of a glass sponge reef or bioherm

    Warming and acidification threaten glass sponge Aphrocallistes vastus pumping and reef formation

    Get PDF
    The glass sponge Aphrocallistes vastus contributes to the formation of large reefs unique to the Northeast Pacific Ocean. These habitats have tremendous filtration capacity that facilitates flow of carbon between trophic levels. Their sensitivity and resilience to climate change, and thus persistence in the Anthropocene, is unknown. Here we show that ocean acidification and warming, alone and in combination have significant adverse effects on pumping capacity, contribute to irreversible tissue withdrawal, and weaken skeletal strength and stiffness of A. vastus. Within one month sponges exposed to warming (including combined treatment) ceased pumping (50–60%) and exhibited tissue withdrawal (10–25%). Thermal and acidification stress significantly reduced skeletal stiffness, and warming weakened it, potentially curtailing reef formation. Environmental data suggests conditions causing irreversible damage are possible in the field at +0.5 °C above current conditions, indicating that ongoing climate change is a serious and immediate threat to A. vastus, reef dependent communities, and potentially other glass sponges

    Environmental Controls and Anthropogenic Impacts on Deep-Sea Sponge Grounds in the Faroe-Shetland Channel, NE Atlantic: the Importance of Considering Spatial Scale to Distinguish Drivers of Change

    Get PDF
    Determining the scale of anthropogenic impacts is critical in order to understand ecosystem effects of human activities, within the context of changes caused by natural environmental variability. We applied spatial eigenfunction analysis to disentangle effects of anthropogenic drivers from environmental factors on species assembly in the Faroe-Shetland Channel (FSC), in the northeast Atlantic. We found that the species assembly considered here was structured at both small and large spatial scales. Specifically, substrate types, distance to oil wells and pipelines, the presence of objects and demersal fishing (both static and mobile) appeared significant in explaining large spatial scale species assembly structures. Conversely, temperature and variance in temperature shaped the species community across smaller spatial scales. Mobile scavenger species were found in areas impacted by demersal fishing. Oil and gas structures seemed to provide a habitat for a range of species including the commercially important fishes Molva sp. and Sebastes sp. These results demonstrate how the benthic ecosystem in the FSC has been shaped by multiple human activities, at both small and large spatial scales. Only by sampling datasets covering several sites, like in this study, can the effects of anthropogenic activities be separated from natural environmental controls
    corecore