4 research outputs found

    The Role of Cryoprotective Agents in Liposome Stabilization and Preservation

    No full text
    To improve liposomes’ usage as drug delivery vehicles, cryoprotectants can be utilized to prevent constituent leakage and liposome instability. Cryoprotective agents (CPAs) or cryoprotectants can protect liposomes from the mechanical stress of ice by vitrifying at a specific temperature, which forms a glassy matrix. The majority of studies on cryoprotectants demonstrate that as the concentration of the cryoprotectant is increased, the liposomal stability improves, resulting in decreased aggregation. The effectiveness of CPAs in maintaining liposome stability in the aqueous state essentially depends on a complex interaction between protectants and bilayer composition. Furthermore, different types of CPAs have distinct effective mechanisms of action; therefore, the combination of several cryoprotectants may be beneficial and novel attributed to the synergistic actions of the CPAs. In this review, we discuss the use of liposomes as drug delivery vehicles, phospholipid–CPA interactions, their thermotropic behavior during freezing, types of CPA and their mechanism for preventing leakage of drugs from liposomes

    Tricine as a Novel Cryoprotectant with Osmotic Regulation, Ice Recrystallization Inhibition and Antioxidant Properties for Cryopreservation of Red Blood Cells

    No full text
    The cryopreservation of red blood cells (RBCs) plays a key role in blood transfusion therapy. Traditional cryoprotectants (CPAs) are mostly organic solvents and may cause side effects to RBCs, such as hemolysis and membrane damage. Therefore, it is necessary to find CPAs with a better performance and lower toxicity. Herein, we report for the first time that N-[Tri(hydroxymethyl)methyl]glycine (tricine) showed a great potential in the cryopreservation of sheep RBCs. The addition of tricine significantly increased the thawed RBCs’ recovery from 19.5 ± 1.8% to 81.2 ± 8.5%. The properties of thawed RBCs were also maintained normally. Through mathematical modeling analysis, tricine showed a great efficiency in cryopreservation. We found that tricine had a good osmotic regulation capacity, which could mitigate the dehydration of RBCs during cryopreservation. In addition, tricine inhibited ice recrystallization, thereby decreasing the mechanical damage from ice. Tricine could also reduce oxidative damage during freezing and thawing by scavenging reactive oxygen species (ROS) and maintaining the activities of endogenous antioxidant enzymes. This work is expected to open up a new path for the study of novel CPAs and promote the development of cryopreservation of RBCs

    Antifreeze Proteins: Novel Applications and Navigation towards Their Clinical Application in Cryobanking

    No full text
    Antifreeze proteins (AFPs) or thermal hysteresis (TH) proteins are biomolecular gifts of nature to sustain life in extremely cold environments. This family of peptides, glycopeptides and proteins produced by diverse organisms including bacteria, yeast, insects and fish act by non-colligatively depressing the freezing temperature of the water below its melting point in a process termed thermal hysteresis which is then responsible for ice crystal equilibrium and inhibition of ice recrystallisation; the major cause of cell dehydration, membrane rupture and subsequent cryodamage. Scientists on the other hand have been exploring various substances as cryoprotectants. Some of the cryoprotectants in use include trehalose, dimethyl sulfoxide (DMSO), ethylene glycol (EG), sucrose, propylene glycol (PG) and glycerol but their extensive application is limited mostly by toxicity, thus fueling the quest for better cryoprotectants. Hence, extracting or synthesizing antifreeze protein and testing their cryoprotective activity has become a popular topic among researchers. Research concerning AFPs encompasses lots of effort ranging from understanding their sources and mechanism of action, extraction and purification/synthesis to structural elucidation with the aim of achieving better outcomes in cryopreservation. This review explores the potential clinical application of AFPs in the cryopreservation of different cells, tissues and organs. Here, we discuss novel approaches, identify research gaps and propose future research directions in the application of AFPs based on recent studies with the aim of achieving successful clinical and commercial use of AFPs in the future

    Dimethylglycine Can Enhance the Cryopreservation of Red Blood Cells by Reducing Ice Formation and Oxidative Damage

    No full text
    The cryopreservation of red blood cells (RBCs) holds great potential for ensuring timely blood transfusions and maintaining an adequate RBC inventory. The conventional cryoprotectants (CPAs) have a lot of limitations, and there is an obvious need for novel, efficient, and biocompatible CPAs. Here, it is shown for the first time that the addition of dimethylglycine (DMG) improved the thawed RBC recovery from 11.55 ± 1.40% to 72.15 ± 1.22%. We found that DMG could reduce the mechanical damage by inhibiting ice formation and recrystallization during cryopreservation. DMG can also scavenge reactive oxygen species (ROS) and maintain endogenous antioxidant enzyme activities to decrease oxidative damage during cryopreservation. Furthermore, the properties of thawed RBCs were found to be similar to the fresh RBCs in the control. Finally, the technique for order performance by similarity to ideal solution (TOPSIS) was used to compare the performance of glycerol (Gly), hydroxyethyl starch (HES), and DMG in cryopreservation, and DMG exhibited the best efficiency. This work confirms the use of DMG as a novel CPA for cryopreservation of RBCs and may promote clinical transfusion therapy
    corecore