47 research outputs found

    Disruption of the A 3 Adenosine Receptor Gene in Mice and Its Effect on Stimulated Inflammatory Cells

    Get PDF
    The A(3) adenosine receptor (A3AR) is one of four receptor subtypes for adenosine and is expressed in a broad spectrum of tissues. In order to study the function of A3AR, a mouse line carrying a mutant A(3) allele was generated. Mice homozygous for targeted disruption of the A3AR gene, A3AR(-/-), are fertile and visually and histologically indistinguishable from wild type mice. The lack of a functional receptor in the A3AR(-/-) mice was confirmed by molecular and pharmacological analyses. The absence of A3AR protein expression in the A3AR(-/-) mice was demonstrated by lack of N(6)-(4-amino-3-[(125)I]iodobenzyl)adenosine binding to bone marrow-derived mast cell membranes that were found to express high levels of A3AR in wild type mice. In A3AR(-/-) mice, the density of A(1) and A(2A) adenosine receptor subtypes was the same as in A3AR(+/+) mice as determined by radioligand binding to brain membranes. Additionally, A(2B) receptor transcript expression was not affected by ablation of the A3AR gene. A3AR(-/-) mice have basal heart rates and arterial blood pressures indistinguishable from A3AR(+/+) mice. Functionally, in contrast to wild type mice, adenosine and the A3AR-specific agonist, 2-chloro-N(6)-(3-iodobenzyl)-adenosine-5'-N-methyl-carboxamide (2-Cl-IB-MECA), elicit no potentiation of antigen-dependent degranulation of bone marrow-derived mast cells from A3AR(-/-) mice as measured by hexosaminidase release. Also, the ability of 2Cl-IB-MECA to inhibit lipopolysaccharide-induced tumor necrosis factor-alpha production in vivo was decreased in A3AR(-/-) mice in comparison to A3AR(+/+) mice. The A(2A) adenosine receptor agonist, 2-p-(2-carboxyethyl)phenylamino)-5'-N-ethylcarboxamidoadenosine, produced inhibition of lipopolysaccharide-stimulated tumor necrosis factor-alpha production in both A3AR(-/-) and A3AR(+/+) mice. These results show that the inhibition in vivo can be mediated by multiple subtypes, specifically the A(3) and A(2A) adenosine receptors, and A3AR activation plays an important role in both pro- and anti-inflammatory responses

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Targeted deletion of adenosine A(3) receptors augments adenosine-induced coronary flow in isolated mouse heart.

    No full text
    To determine whether adenosine A(3) receptors participate in adenosine-induced changes in coronary flow, isolated hearts from wild-type (WT) and A(3) receptor knockout (A(3)KO) mice were perfused under constant pressure and effects of nonselective and selective agonists were examined. Adenosine and the selective A(2A) agonist 2-[p-(2-carboxyethyl)]phenylethylamino-5'-N-ethylcarboxamidoadenosine (CGS-21680) produced augmented maximal coronary vasodilation in A(3)KO hearts compared with WT hearts. Selective activation of A(3) receptors with 2-chloro-N(6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (Cl-IB-MECA) at nanomolar concentrations did not effect coronary flow, but at higher concentrations it produced coronary vasodilation both in WT and A(3)KO hearts. Cl-IB-MECA-induced increases in coronary flow were susceptible to both pharmacological blockade and genetic deletion of A(2A) receptors. Because deletion or blockade of adenosine A(3) receptors augmented coronary flow induced by nonselective adenosine and the selective A(2A) receptor agonist CGS-21680, we speculate that this is due to removal of an inhibitory influence associated with the A(3) receptor subtype. These data indicate that the presence of adenosine A(3) receptors may either inhibit or negatively modulate coronary flow mediated by other adenosine receptor subtypes.Journal ArticleResearch Support, U.S. Gov't, P.H.S.info:eu-repo/semantics/publishe

    High-Throughput Ca 2+

    No full text

    Adenosine kinase inhibition promotes survival of fetal adenosine deaminase–deficient thymocytes by blocking dATP accumulation

    Get PDF
    Thymocyte development past the CD4(–)CD8(–) stage is markedly inhibited in adenosine deaminase–deficient (ADA-deficient) murine fetal thymic organ cultures (FTOCs) due to the accumulation of ADA substrates derived from thymocytes failing developmental checkpoints. Such cultures can be rescued by overexpression of Bcl-2, suggesting that apoptosis is an important component of the mechanism by which ADA deficiency impairs thymocyte development. Consistent with this conclusion, ADA-deficient FTOCs were partially rescued by a rearranged T cell receptor β transgene that permits virtually all thymocytes to pass the β-selection checkpoint. ADA-deficient cultures were also rescued by the adenosine kinase inhibitor 5′-amino-5′-deoxyadenosine (5′A5′dAdo), indicating that the metabolite responsible for the inhibition of thymocyte development is not adenosine or deoxyadenosine, but a phosphorylated derivative of an ADA substrate. Correction of ADA-deficient FTOCs by 5′A5′dAdo correlated with reduced accumulation of dATP, implicating this compound as the toxic metabolite. In ADA-inhibited FTOCs rescued with a Bcl-2 transgene, however, dATP levels were superelevated, suggesting that cells failing positive and negative selection continued to contribute to the accumulation of ADA substrates. Our data are consistent with dATP-induced mitochondrial cytochrome c release followed by apoptosis as the mechanism by which ADA deficiency leads to reduced thymic T cell production

    Cardioprotection by ecto-5'-nucleotidase (CD73) and A2B adenosine receptors.

    No full text
    BACKGROUND: Ecto-5'-nucleotidase (CD73)-dependent adenosine generation has been implicated in tissue protection during acute injury. Once generated, adenosine can activate cell-surface adenosine receptors (A1 AR, A2A AR, A2B AR, A3 AR). In the present study, we define the contribution of adenosine to cardioprotection by ischemic preconditioning. METHODS AND RESULTS: On the basis of observations of CD73 induction by ischemic preconditioning, we found that inhibition or targeted gene deletion of cd73 abolished infarct size-limiting effects. Moreover, 5'-nucleotidase treatment reconstituted cd73-/- mice and attenuated infarct sizes in wild-type mice. Transcriptional profiling of adenosine receptors suggested a contribution of A2B AR because it was selectively induced by ischemic preconditioning. Specifically, in situ ischemic preconditioning conferred cardioprotection in A1 AR-/-, A2A AR-/-, or A3 AR-/- mice but not in A2B AR-/- mice or in wild-type mice after inhibition of the A2B AR. Moreover, A2B AR agonist treatment significantly reduced infarct sizes after ischemia. CONCLUSIONS: Taken together, pharmacological and genetic evidence demonstrate the importance of CD73-dependent adenosine generation and signaling through A2B AR for cardioprotection by ischemic preconditioning and suggests 5'-nucleotidase or A2B AR agonists as therapy for myocardial ischemia.Journal ArticleResearch Support, N.I.H. ExtramuralResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe
    corecore