11 research outputs found

    High dose rate brachytherapy as monotherapy for localised prostate cancer : a hypofractionated two-implant approach in 351 consecutive patients

    Get PDF
    BACKGROUND: To report the clinical outcome of high dose rate brachytherapy as sole treatment for clinically localised prostate cancer. METHODS: Between March 2004 and January 2008, a total of 351 consecutive patients with clinically localised prostate cancer were treated with transrectal ultrasound guided high dose rate brachytherapy. The prescribed dose was 38.0 Gy in four fractions (two implants of two fractions each of 9.5 Gy with an interval of 14 days between the implants) delivered to an intraoperative transrectal ultrasound real-time defined planning treatment volume. Biochemical failure was defined according to the Phoenix Consensus and toxicity evaluated using the Common Toxicity Criteria for Adverse Events version 3. RESULTS: The median follow-up time was 59.3 months. The 36 and 60 month biochemical control and metastasis-free survival rates were respectively 98%, 94% and 99%, 98%. Toxicity was scored per event with 4.8% acute Grade 3 genitourinary and no acute Grade 3 gastrointestinal toxicity. Late Grade 3 genitourinary and gastrointestinal toxicity were respectively 3.4% and 1.4%. No instances of Grade 4 or greater acute or late adverse events were reported. CONCLUSIONS: Our results confirm high dose rate brachytherapy as safe and effective monotherapy for clinically organ-confined prostate cancer

    Antike Gußtechnik in der numerischen Simulation

    No full text

    Untersuchungen zu antiken Formmaterialien und -aufbautechniken

    No full text

    The effect of in vitro electrolytic cleaning on biofilm-contaminated implant surfaces

    No full text
    Purpose: Bacterial biofilms are a major problem in the treatment of infected dental and orthopedic implants. The purpose of this study is to investigate the cleaning effect of an electrolytic approach (EC) compared to a powder-spray system (PSS) on titanium surfaces. Materials and Methods: The tested implants (different surfaces and alloys) were collated into six groups and treated ether with EC or PSS. After a mature biofilm was established, the implants were treated, immersed in a nutritional solution, and streaked on Columbia agar. Colony-forming units (CFUs) were counted after breeding and testing (EC), and control (PSS) groups were compared using a paired sample t-test. Results: No bacterial growth was observed in the EC groups. After thinning to 1:1,000,000, 258.1 ± 19.9 (group 2), 264.4 ± 36.5 (group 4), and 245.3 ± 40.7 (group 6) CFUs could be counted in the PSS groups. The difference between the electrolytic approach (test groups 1, 3, and 5) and PSS (control groups 2, 4, and 6) was statistically extremely significant (p-value < 2.2 × 10−16). Conclusion: Only EC inactivated the bacterial biofilm, and PSS left reproducible bacteria behind. Within the limits of this in vitro test, clinical relevance could be demonstrated
    corecore