11 research outputs found

    Feature Mapping for Learning Fast and Accurate 3D Pose Inference from Synthetic Images

    Full text link
    We propose a simple and efficient method for exploiting synthetic images when training a Deep Network to predict a 3D pose from an image. The ability of using synthetic images for training a Deep Network is extremely valuable as it is easy to create a virtually infinite training set made of such images, while capturing and annotating real images can be very cumbersome. However, synthetic images do not resemble real images exactly, and using them for training can result in suboptimal performance. It was recently shown that for exemplar-based approaches, it is possible to learn a mapping from the exemplar representations of real images to the exemplar representations of synthetic images. In this paper, we show that this approach is more general, and that a network can also be applied after the mapping to infer a 3D pose: At run time, given a real image of the target object, we first compute the features for the image, map them to the feature space of synthetic images, and finally use the resulting features as input to another network which predicts the 3D pose. Since this network can be trained very effectively by using synthetic images, it performs very well in practice, and inference is faster and more accurate than with an exemplar-based approach. We demonstrate our approach on the LINEMOD dataset for 3D object pose estimation from color images, and the NYU dataset for 3D hand pose estimation from depth maps. We show that it allows us to outperform the state-of-the-art on both datasets.Comment: CVPR 201

    Generalized Feedback Loop for Joint Hand-Object Pose Estimation

    Full text link
    We propose an approach to estimating the 3D pose of a hand, possibly handling an object, given a depth image. We show that we can correct the mistakes made by a Convolutional Neural Network trained to predict an estimate of the 3D pose by using a feedback loop. The components of this feedback loop are also Deep Networks, optimized using training data. This approach can be generalized to a hand interacting with an object. Therefore, we jointly estimate the 3D pose of the hand and the 3D pose of the object. Our approach performs en-par with state-of-the-art methods for 3D hand pose estimation, and outperforms state-of-the-art methods for joint hand-object pose estimation when using depth images only. Also, our approach is efficient as our implementation runs in real-time on a single GPU.Comment: arXiv admin note: substantial text overlap with arXiv:1609.0969

    DeepPrior++: Improving Fast and Accurate 3D Hand Pose Estimation

    Full text link
    International audienceDeepPrior is a simple approach based on Deep Learning that predicts the joint 3D locations of a hand given a depth map. Since its publication early 2015, it has been outperformed by several impressive works. Here we show that with simple improvements: adding ResNet layers, data augmentation, and better initial hand localization, we achieve better or similar performance than more sophisticated recent methods on the three main benchmarks (NYU, ICVL, MSRA) while keeping the simplicity of the original method. Our new implementation is available at https: //github.com/moberweger/deep-prior-p

    Efficient Physics-Based Implementation for Realistic Hand-Object Interaction in Virtual Reality

    Full text link
    International audienceWe propose an efficient physics-based method for dexterous 'real hand'-'virtual object' interaction in Virtual Reality environments. Our method is based on the Coulomb friction model, and we show how to efficiently implement it in a commodity VR engine for real-time performance. This model enables very convincing simulations of many types of actions such as pushing, pulling, grasping, or even dexterous manipulations such as spinning objects between fingers without restrictions on the objects' shapes or hand poses. Because it is an analytic model, we do not require any prerecorded data, in contrast to previous methods. For the evaluation of our method, we conduction a pilot study that shows that our method is perceived more realistic and natural, and allows for more diverse interactions. Further, we evaluate the computational complexity of our method to show real-time performance in VR environments

    Efficient Physics-Based Implementation for Realistic Hand-Object Interaction in Virtual Reality

    Full text link
    International audienceWe propose an efficient physics-based method for dexterous 'real hand'-'virtual object' interaction in Virtual Reality environments. Our method is based on the Coulomb friction model, and we show how to efficiently implement it in a commodity VR engine for real-time performance. This model enables very convincing simulations of many types of actions such as pushing, pulling, grasping, or even dexterous manipulations such as spinning objects between fingers without restrictions on the objects' shapes or hand poses. Because it is an analytic model, we do not require any prerecorded data, in contrast to previous methods. For the evaluation of our method, we conduction a pilot study that shows that our method is perceived more realistic and natural, and allows for more diverse interactions. Further, we evaluate the computational complexity of our method to show real-time performance in VR environments
    corecore