50 research outputs found

    Mobile intraoperative CT-assisted frameless stereotactic biopsies achieved single-millimeter trajectory accuracy for deep-seated brain lesions in a sample of 7 patients

    Full text link
    BACKGROUND Brain biopsies are crucial diagnostic interventions, providing valuable information for treatment and prognosis, but largely depend on a high accuracy and precision. We hypothesized that through the combination of neuronavigation-based frameless stereotaxy and MRI-guided trajectory planning with intraoperative CT examination using a mobile unit, one can achieve a seamlessly integrated approach yielding optimal target accuracy. METHODS We analyzed a total of 7 stereotactic biopsy trajectories for a variety of deep-seated locations and different patient positions. After rigid head fixation, an intraoperative pre-procedural scan using a mobile CT unit was performed for automatic image fusion with the planning MRI images and a peri-procedural scan with the biopsy cannula in situ for verification of the definite target position. We then evaluated the radial trajectory error. RESULTS Intraoperative scanning, surgery, computerized merging of MRI and CT images as well as trajectory planning were feasible without difficulties and safe in all cases. We achieved a radial trajectory deviation of 0.97 ± 0.39 mm at a trajectory length of 60 ± 12.3 mm (mean ± standard deviation). Repositioning of the biopsy cannula due to inaccurate targeting was not required. CONCLUSION Intraoperative verification using a mobile CT unit in combination with frameless neuronavigation-guided stereotaxy and pre-operative MRI-based trajectory planning was feasible, safe and highly accurate. The setting enabled single-millimeter accuracy for deep-seated brain lesions and direct detection of intraoperative complications, did not depend on a dedicated operating room and was seamlessly integrated into common stereotactic procedures

    Deep brain electrical neurofeedback allows Parkinson patients to control pathological oscillations and quicken movements

    Full text link
    Parkinsonian motor symptoms are linked to pathologically increased beta-oscillations in the basal ganglia. While pharmacological treatment and deep brain stimulation (DBS) reduce these pathological oscillations concomitantly with improving motor performance, we set out to explore neurofeedback as an endogenous modulatory method. We implemented real-time processing of pathological subthalamic beta oscillations through implanted DBS electrodes to provide deep brain electrical neurofeedback. Patients volitionally controlled ongoing beta-oscillatory activity by visual neurofeedback within minutes of training. During a single one-hour training session, the reduction of beta-oscillatory activity became gradually stronger and we observed improved motor performance. Lastly, endogenous control over deep brain activity was possible even after removing visual neurofeedback, suggesting that neurofeedback-acquired strategies were retained in the short-term. Moreover, we observed motor improvement when the learnt mental strategies were applied 2 days later without neurofeedback. Further training of deep brain neurofeedback might provide therapeutic benefits for Parkinson patients by improving symptom control using strategies optimized through neurofeedback

    Nicotine Replacement Therapy for Smokers with Acute Aneurysmal Subarachnoid Hemorrhage: An International Survey

    Full text link
    INTRODUCTION Smoking prevalence is twice as high among patients admitted to hospital because of the acute condition of aneurysmal subarachnoid hemorrhage (aSAH) as in the general population. Smoking cessation may improve the prognosis of aSAH, but nicotine replacement therapy (NRT) administered at the time of aSAH remains controversial because of potential adverse effects such as cerebral vasospasm. We investigated the international practice of NRT use for aSAH among neurosurgeons. METHODS The online SurveyMonkey software was used to administer a 15-question, 5-min online questionnaire. An invitation link was sent to those 1425 of 1988 members of the European Association of Neurosurgical Societies (EANS) who agreed to participate in surveys to assess treatment strategies for withdrawal of tobacco smoking during aSAH. Factors contributing to physicians' posture towards NRT were assessed. RESULTS A total of 158 physicians from 50 nations participated in the survey (response rate 11.1%); 68.4% (108) were affiliated with university hospitals and 67.7% (107) practiced at high-volume neurovascular centers with at least 30 treated aSAH cases per year. Overall, 55.7% (88) of physicians offered NRT to smokers with aSAH, 22.1% (35) offered non-NRT support including non-nicotine medication and counselling, while the remaining 22.1% (35) did not actively support smoking cessation. When smoking was not possible, 42.4% (67) of physicians expected better clinical outcomes when prescribing NRT instead of nicotine deprivation, 36.1% (57) were uncertain, 13.9% (22) assumed unaffected outcomes, and 7.6% (12) assumed worse outcomes. Only 22.8% (36) physicians had access to a local smoking cessation team in their practice, of whom half expected better outcomes with NRT as compared to deprivation. CONCLUSIONS A small majority of the surveyed physicians of the EANS offered NRT to support smoking cessation in hospitalized patients with aSAH. However, less than half believed that NRT could positively impact clinical outcome as compared to deprivation. This survey demonstrated the lack of consensus regarding use of NRT for hospitalized smokers with aSAH

    Rapid Eye Movement Sleep Behavior Disorder:Abnormal Cardiac Image and Progressive Abnormal Metabolic Brain Pattern

    Get PDF
    BACKGROUND: Isolated rapid eye movement sleep behavior disorder (iRBD) is prodromal for α-synucleinopathies. OBJECTIVE: The aim of this study was to determine whether pathological cardiac [123 I]meta-iodobenzylguanidine scintigraphy ([123 I]MIBG) is associated with progression of [18 F]fluorodeoxyglucose-positron emission tomography-based Parkinson's disease (PD)-related brain pattern (PDRP) expression in iRBD. METHODS: Seventeen subjects with iRBD underwent [18 F]fluorodeoxyglucose-positron emission tomography brain imaging twice ~3.6 years apart. In addition, [123 I]MIBG and [123 I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane single-photon emission computed tomography ([123 I]FP-CIT-SPECT) at baseline were performed. Olfactory, cognitive, and motor functions were tested annually. RESULTS: Twelve of 17 subjects had pathological [123 I]MIBG. At baseline, 6 of 12 of these expressed the PDRP (suprathreshold PDRP z score). At follow-up, 12 of 17 subjects had suprathreshold PDRP z scores, associated with pathological [123 I]MIBG in 92% and with pathological [123 I]FP-CIT-SPECT in 75%. Subjects with pathological [123 I]MIBG had higher PDRP z score change per year (P = 0.027). Three subjects phenoconverted to PD; all had pathological [123 I]MIBG and [123 I]FP-CIT-SPECT, suprathreshold baseline PDRP z scores, and hyposmia. CONCLUSIONS: Pathological [123 I]MIBG was associated with progressive and suprathreshold PDRP z scores at follow-up. Abnormal [123 I]MIBG likely identifies iRBD as prodromal PD earlier than pathological [123 I]FP-CIT-SPECT. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society

    Inhaled Nitric Oxide Treatment for Aneurysmal SAH Patients With Delayed Cerebral Ischemia

    Get PDF
    BACKGROUND: We demonstrated experimentally that inhaled nitric oxide (iNO) dilates hypoperfused arterioles, increases tissue perfusion, and improves neurological outcome following subarachnoid hemorrhage (SAH) in mice. We performed a prospective pilot study to evaluate iNO in patients with delayed cerebral ischemia after SAH. METHODS: SAH patients with delayed cerebral ischemia and hypoperfusion despite conservative treatment were included. iNO was administered at a maximum dose of 40 ppm. The response to iNO was considered positive if: cerebral artery diameter increased by 10% in digital subtraction angiography (DSA), or tissue oxygen partial pressure (PtiO(2)) increased by > 5 mmHg, or transcranial doppler (TCD) values decreased more than 30 cm/sec, or mean transit time (MTT) decreased below 6.5 secs in CT perfusion (CTP). Patient outcome was assessed at 6 months with the modified Rankin Scale (mRS). RESULTS: Seven patients were enrolled between February 2013 and September 2016. Median duration of iNO administration was 23 h. The primary endpoint was reached in all patients (five out of 17 DSA examinations, 19 out of 29 PtiO(2) time points, nine out of 26 TCD examinations, three out of five CTP examinations). No adverse events necessitating the cessation of iNO were observed. At 6 months, three patients presented with a mRS score of 0, one patient each with an mRS score of 2 and 3, and two patients had died. CONCLUSION: Administration of iNO in SAH patients is safe. These results call for a larger prospective evaluation

    Enhanced firing of locus coeruleus neurons and SK channel dysfunction are conserved in distinct models of prodromal Parkinson's disease

    Get PDF
    Parkinson’s disease (PD) is clinically defined by the presence of the cardinal motor symptoms, which are associated with a loss of dopaminergic nigrostriatal neurons in the substantia nigra pars compacta (SNpc). While SNpc neurons serve as the prototypical cell-type to study cellular vulnerability in PD, there is an unmet need to extent our efforts to other neurons at risk. The noradrenergic locus coeruleus (LC) represents one of the first brain structures affected in Parkinson’s disease (PD) and plays not only a crucial role for the evolving non-motor symptomatology, but it is also believed to contribute to disease progression by efferent noradrenergic deficiency. Therefore, we sought to characterize the electrophysiological properties of LC neurons in two distinct PD models: (1) in an in vivo mouse model of focal α-synuclein overexpression; and (2) in an in vitro rotenone-induced PD model. Despite the fundamental differences of these two PD models, α-synuclein overexpression as well as rotenone exposure led to an accelerated autonomous pacemaker frequency of LC neurons, accompanied by severe alterations of the afterhyperpolarization amplitude. On the mechanistic side, we suggest that Ca(2+)-activated K(+) (SK) channels are mediators of the increased LC neuronal excitability, as pharmacological activation of these channels is sufficient to prevent increased LC pacemaking and subsequent neuronal loss in the LC following in vitro rotenone exposure. These findings suggest a role of SK channels in PD by linking α-synuclein- and rotenone-induced changes in LC firing rate to SK channel dysfunction

    Neurosurgery outcomes and complications in a monocentric 7-year patient registry

    Full text link
    Introduction Capturing adverse events reliably is paramount for clinical practice and research alike. In the era of “big data”, prospective registries form the basis of clinical research and quality improvement. Research question To present results of long-term implementation of a prospective patient registry, and evaluate the validity of the Clavien-Dindo grade (CDG) to classify complications in neurosurgery. Materials and methods A prospective registry for cranial and spinal neurosurgical procedures was implemented in 2013. The CDG – a complication grading focused on need for unplanned therapeutic intervention – was used to grade complications. We assess construct validity of the CDG. Results Data acquisition integrated into our hospital workflow permitted to include all eligible patients into the registry. We have registered 8226 patients that were treated in 11994 surgeries and 32494 consultations up until December 2020. Similarly, we have captured 1245 complications on 6308 patient discharge forms (20%) since full operational status of the registry. The majority of complications (819/6308 ​= ​13%) were treated without invasive treatment (CDG 1 or CDG 2). At discharge, there was a clear correlation of CDG and the Karnofsky Performance Status (KPS, rho ​= ​-0.29, slope -7 KPS percentage points per increment of CDG) and the length of stay (rho ​= ​0.43, slope 3.2 days per increment of CDG)

    Pathogenesis, diagnosis and management of pneumorrhachis

    Get PDF
    Pneumorrhachis (PR), the presence of intraspinal air, is an exceptional but eminent radiographic finding, accompanied by different aetiologies and possible pathways of air entry into the spinal canal. By reviewing the literature and analysing a personal case of traumatic cervical PR after head injury, we present current data regarding the pathoanatomy, clinical and radiological presentation, diagnosis and differential diagnosis and treatment modalities of patients with PR and associated pathologies to highlight this uncommon phenomenon and outline aetiology-based guidelines for the practical management of PR. Air within the spinal canal can be divided into primary and secondary PR, descriptively classified into extra- or intradural PR and aetiologically subsumed into iatrogenic, traumatic and nontraumatic PR. Intraspinal air is usually found isolated not only in the cervical, thoracic and, less frequently, the lumbosacral regions but can also be located in the entire spinal canal. PR is almost exceptional associated with further air distributions in the body. The pathogenesis and aetiologies of PR are multifold and can be a diagnostic challenge. The diagnostic procedure should include spinal CT, the imaging tool of choice. PR has to be differentiated from free intraspinal gas collections and the coexistence of air and gas within the spinal canal has to be considered differential diagnostically. PR usually represents an asymptomatic epiphenomenon but can also be symptomatic by itself as well as by its underlying pathology. The latter, although often severe, might be concealed and has to be examined carefully to enable adequate patient treatment. The management of PR has to be individualized and frequently requires a multidisciplinary regime
    corecore