98 research outputs found

    Unusual spin-wave population in nickel after femtosecond laser pulse excitation

    Full text link
    The spin-wave relaxation mechanisms after intense laser excitation in ferromagnetic nickel films are investigated with all-optical pump-probe experiments. Uniform precession (Kittel mode), Damon-Eshbach surface modes and perpendicular standing spin waves can be identified by their dispersion f(H). However, different to other ferromagnets f(H) deviates from the expected behavior. Namely, a mode discontinuity is observed, that can be attributed to a non-linear process. Above a critical field the power spectrum reveals a redistribution of the energy within the spin-wave spectrum populated.Comment: 7 pages, 6 figure

    The Major Ciliary Isoforms of RPGR Build Different Interaction Complexes with INPP5E and RPGRIP1L

    Get PDF
    X-linked retinitis pigmentosa (XLRP) is frequently caused by mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene. A complex splicing process acts on the RPGR gene resulting in three major isoforms: RPGR(ex1-19), RPGR(ORF15) and RPGR(skip14/15). We characterized the widely expressed, alternatively spliced transcript RPGR(skip14/15) lacking exons 14 and 15. Using the CRISPR/eSpCas9 system, we generated HEK293T cell lines exclusively expressing the RPGR(skip14/15) transcript from the endogenous RPGR gene. RPGR(ex1-19) and RPGR(ORF15) were knocked out. Immunocytochemistry demonstrated that the RPGR(skip14/15) protein localizes along primary cilia, resembling the expression pattern of RPGR(ex1-19). The number of cilia-carrying cells was not affected by the absence of the RPGR(ex1-19) and RPGR(ORF15) isoforms. Co-immunoprecipitation assays demonstrated that both RPGR(ex1-19) and RPGR(skip14/15) interact with PDE6D, further supporting that RPGR(skip14/15) is associated with the protein networks along the primary cilium. Interestingly, interaction complexes with INPP5E or RPGRIP1L were only detectable with isoform RPGR(ex1-19), but not with RPGR(skip14/15), demonstrating distinct functional properties of the major RPGR isoforms in spite of their similar subcellular localization. Our findings lead to the conclusion that protein binding sites within RPGR are mediated through alternative splicing. A tissue-specific expression ratio between RPGR(skip14/15) and RPGR(ex1-19) seems required to regulate the ciliary concentration of RPGR interaction partners

    Structural and functional roles of small group-conserved amino acids present on helix-H7 in the β2-adrenergic receptor

    Get PDF
    AbstractSequence analysis of the class A G protein-coupled receptors (GPCRs) reveals that most of the highly conserved sites are located in the transmembrane helices. A second level of conservation exists involving those residues that are conserved as a group characterized by small and/or weakly polar side chains (Ala, Gly, Ser, Cys, Thr). These positions can have group conservation levels of up to 99% across the class A GPCRs and have been implicated in mediating helix–helix interactions in membrane proteins. We have previously shown that mutation of group-conserved residues present on transmembrane helices H2–H4 in the β2-adrenergic receptor (β2-AR) can influence both receptor expression and function. We now target the group-conserved sites, Gly3157.42 and Ser3197.46, on H7 for structure-function analysis. Replacing Ser3197.46 with smaller amino acids (Ala or Gly) did not influence the ability of the mutant receptors to bind to the antagonist dihydroalprenolol (DHA) but resulted in ~15–20% agonist-independent activity. Replacement of Ser3197.46 with the larger amino acid leucine lowered the expression of the S319L mutant and its ability to bind DHA. Both the G315A and G315S mutants also exhibited agonist-independent signaling, while the G315L mutant did not show specific binding to DHA. These data indicate that Gly3157.42 and Ser3197.46 are stabilizing β2-AR in an inactive conformation. We discuss our results in the context of van der Waals interactions of Gly3157.42 with Trp2866.48 and hydrogen bonding interactions of Ser3197.46 with amino acids on H1–H2–H7 and with structural water

    RASSF1A promoter methylation and expression analysis in normal and neoplastic kidney indicates a role in early tumorigenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epigenetic silencing of the RAS association domain family 1A (<it>RASSF1A</it>) tumor suppressor gene promoter has been demonstrated in renal cell carcinoma (RCC) as a result of promoter hypermethylation. Contradictory results have been reported for <it>RASSF1A </it>methylation in normal kidney, thus it is not clear whether a significant difference between <it>RASSF1A </it>methylation in normal and tumor cells of the kidney exists. Moreover, RASSF1A expression has not been characterized in tumors or normal tissue as yet.</p> <p>Results</p> <p>Using combined bisulfite restriction analysis (COBRA) we compared RASSF1A methylation in 90 paired tissue samples obtained from primary kidney tumors and corresponding normal tissue. Bisulfite sequence analysis was carried out using both pooled amplicons from the tumor and normal tissue groups and subclones obtained from a single tissue pair. Expression of RASSF1A was analyzed by the use of tissue arrays and immunohistochemistry. We found significantly increased methylation in tumor samples (mean methylation, 20%) compared to corresponding normal tissues (mean methylation, 11%; <it>P </it>< 0.001). Densely methylated sequences were found both in pooled and individual sequences of normal tissue. Immunohistochemical analysis revealed a significant reduced expression of RASSF1A in most of the tumor samples. Heterogeneous expression patterns of RASSF1A were detected in a subgroup of histologically normal tubular epithelia.</p> <p>Conclusion</p> <p>Our methylation and expression data support the hypothesis that <it>RASSF1A </it>is involved in early tumorigenesis of renal cell carcinoma.</p

    Retinal orientation and interactions in rhodopsin reveal a two-stage trigger mechanism for activation

    Get PDF
    The 11-cis retinal chromophore is tightly packed within the interior of the visual receptor rhodopsin and isomerizes to the all-trans configuration following absorption of light. The mechanism by which this isomerization event drives the outward rotation of transmembrane helix H6, a hallmark of activated G protein-coupled receptors, is not well established. To address this question, we use solid-state NMR and FTIR spectroscopy to define the orientation and interactions of the retinal chromophore in the active metarhodopsin II intermediate. Here we show that isomerization of the 11-cis retinal chromophore generates strong steric interactions between its β-ionone ring and transmembrane helices H5 and H6, while deprotonation of its protonated Schiff’s base triggers the rearrangement of the hydrogen-bonding network involving residues on H6 and within the second extracellular loop. We integrate these observations with previous structural and functional studies to propose a two-stage mechanism for rhodopsin activation

    Tracked 3D ultrasound and deep neural network-based thyroid segmentation reduce interobserver variability in thyroid volumetry

    Get PDF
    Thyroid volumetry is crucial in the diagnosis, treatment, and monitoring of thyroid diseases. However, conventional thyroid volumetry with 2D ultrasound is highly operator-dependent. This study compares 2D and tracked 3D ultrasound with an automatic thyroid segmentation based on a deep neural network regarding inter- and intraobserver variability, time, and accuracy. Volume reference was MRI. 28 healthy volunteers (24—50 a) were scanned with 2D and 3D ultrasound (and by MRI) by three physicians (MD 1, 2, 3) with different experience levels (6, 4, and 1 a). In the 2D scans, the thyroid lobe volumes were calculated with the ellipsoid formula. A convolutional deep neural network (CNN) automatically segmented the 3D thyroid lobes. 26, 6, and 6 random lobe scans were used for training, validation, and testing, respectively. On MRI (T1 VIBE sequence) the thyroid was manually segmented by an experienced MD. MRI thyroid volumes ranged from 2.8 to 16.7ml (mean 7.4, SD 3.05). The CNN was trained to obtain an average Dice score of 0.94. The interobserver variability comparing two MDs showed mean differences for 2D and 3D respectively of 0.58 to 0.52ml (MD1 vs. 2), −1.33 to −0.17ml (MD1 vs. 3) and −1.89 to −0.70ml (MD2 vs. 3). Paired samples t-tests showed significant differences for 2D (p = .140, p = .002 and p = .002) and none for 3D (p = .176, p = .722 and p = .057). Intraobsever variability was similar for 2D and 3D ultrasound. Comparison of ultrasound volumes and MRI volumes showed a significant difference for the 2D volumetry of all MDs (p = .002, p = .009, p <.001), and no significant difference for 3D ultrasound (p = .292, p = .686, p = 0.091). Acquisition time was significantly shorter for 3D ultrasound. Tracked 3D ultrasound combined with a CNN segmentation significantly reduces interobserver variability in thyroid volumetry and increases the accuracy of the measurements with shorter acquisition times

    Orbit design for satellite swarm-based interferometric radiometers for super-resolution earth observation

    Get PDF
    Soil moisture and ocean salinity mapping by earth observation satellites has contributed significantly towards a better understanding of the earth’s climate and hydrosphere. Nevertheless, an increased spatial resolution of radiometric data could yield a more complete picture of global hydrological and climate processes. High-resolution radiometers, such as SMOS, have already approached prohibitive sizes for spacecraft due to the required large antenna apertures. Radiometer concepts based on satellites flying in close proximity have been proposed as a possible solution. Individual receivers placed on a large number of smaller satellites orbiting a central satellite would form a combined interferometric array. Recent technological progress in formation flying, satellite miniaturisation, inter-satellite links and data processing could make a future satellite swarm-based radiometer possible. The design of such a system requires a methodology which enables the determination of orbit parameters in a way that optimizes radiometer performance and ensures system feasibility. In the past, the optimization of interferometric array configurations has only aimed to optimize the image quality without taking into account system constraints, such as satellite collision risk, satellite fuel consumption and other feasibility considerations. This resulted in idealized array configurations that might put unrealistic constraints on the satellite system. A current research project of the DLR Microwaves and Radar Institute investigates methodologies for the orbit optimization of large satellite swarm-based interferometric radiometers regarding future earth observation radiometry missions. For this purpose a system simulator has been created for the study of radiometers based on a large number of spacecraft. First results have indicated that an approach based on statistical methods for the quantification of radiometer performance and the use of numeric optimization solvers can yield promising orbit configurations. This paper provides an overview of the optimization approach and first results in generating a feasible and performant satellite swarm configuration for interferometric radiometry purposes

    Magnetization dynamics in optically excited nanostructured nickel films

    Get PDF
    In this work, Laser-induced magnetization dynamics of nanostructured nickel films is investigated. The influence of the nanosize is discussed considering the time-scale of hundreds of femtoseconds as well as the GHz regime. While no nanosize effect is observed on the short time-scale, the excited magnetic mode in the GHz regime can be identified by comparison with micromagnetic simulations. The thickness dependence reveals insight on the dipole interaction between single nickel structures. Also, transient reflectivity changes are discussed

    Time-averaged and time-resolved laser optical temperature measurements in water with Filtered Brillouin Scattering combined with LDV

    Get PDF
    A laser measuring system was developed and built that allows to optically measure temperature in water using the method of Filtered Brillouin Scattering (FBS). First time-resolved optical temperature measurements were demonstrated. Furthermore, the FBS-system was combined with an LDV to enable simultaneous measurement of flow velocity and therefore the system is also capable to measure the heat flow. Time-averaged temperature values were determined with good accuracy and, as a special highlight, also timeresolved temperature measurements have been demonstrated with temporal resolution in the order of approximately 10 ms, validated by comparison with fast thermocouple measurements. The overarching goal of the research project was to prepare the market introduction of a laser-optical measuring system for spatially point-based and time-resolved measurement of the heat flow in liquids, especially in water. In order to realize this, it was necessary to measure the local velocity and the local temperature in a liquid. The optical measurement of the local velocity has long been possible using the established method of laser Doppler velocimetry (LDV). Therefore, the heat flow measurement method to be developed should be based on this technology. Until now, there was no suitable optical method for measuring the temperature. In recent years, however, the physical phenomenon of Brillouin scattering has become one focus of measurement technology development. If a small volume of liquid is irradiated with light, the molecules in the liquid scatter back part of the light, which is known as Brillouin scattering. The spectrum of the scattered light depends on the local temperature in the liquid; and it turns out that this physical relationship can be exploited to develop a highly accurate, fast, and non-contact method for measuring temperature. In this paper, we explain the Filtered Brillouin Scattering (FBS) method, show a setup for measuring temperature and velocity in water flows and thus a method for determining the heat flow, and demonstrate the measurement accuracy using a calibration test bench. The temperature measurement accuracy achieved is in the order of 1 K
    • …
    corecore