154 research outputs found

    Synchrotron and Synchrotron Self-Compton Spectral Signatures and Blazar Emission Models

    Get PDF
    We find that energy losses due to synchrotron self-Compton (SSC) emission in blazar jets can produce distinctive signatures in the time-averaged synchrotron and SSC spectra of these objects. For a fairly broad range of particle injection distributions, SSC-loss dominated synchrotron emission exhibits a spectral dependence FΜ∌Μ−3/2F_\nu \sim \nu^{-3/2}. The presence or absence of this dependence in the optical and ultraviolet spectra of flat spectrum radio quasars such as 3C~279 and in the soft X-ray spectra of high frequency BL Lac objects such as Mrk 501 gives a robust measure of the importance of SSC losses. Furthermore, for partially cooled particle distributions, spectral breaks of varying sizes can appear in the synchrotron and SSC spectra and will be related to the spectral indices of the emission below the break. These spectral signatures place constraints on the size scale and the non-thermal particle content of the emitting plasma as well as the observer orientation relative to the jet axis.Comment: 4 pages, 1 figure, LaTeX2e, emulateapj5.sty, accepted for publication in Ap

    Line emission from gamma-ray burst environments

    Get PDF
    The time and angle dependent line and continuum emission from a dense torus around a cosmological gamma-ray burst source is simulated, taking into account photoionization, collisional ionization, recombination, and electron heating and cooling due to various processes. The importance of the hydrodynamical interaction between the torus and the expanding blast wave is stressed. Due to the rapid deceleration of the blast wave as it interacts with the dense torus, the material in the torus will be illuminated by a drastically different photon spectrum than observable through a low-column-density line of sight, and will be heated by the hydrodynamical interaction between the blast wave and the torus. A model calculation to reproduce the Fe K-alpha line emission observed in the X-ray afterglow of GRB 970508 is presented. The results indicate that ~ 10^{-4} solar masses of iron must be concentrated in a region of less than 10^{-3} pc. The illumination of the torus material due to the hydrodynamic interaction of the blast wave with the torus is the dominant heating and ionization mechanism leading to the formation of the iron line. These results suggest that misaligned GRBs may be detectable as X-ray flashes with pronounced iron emission line features.Comment: Accepted for publication in ApJ. Updated recombination rate data; discussion on element abundances added; references update

    X-ray spectral features from GRBs: Predictions of progenitor models

    Get PDF
    We investigate the potentially observable prompt or delayed X-ray spectral features from the currently popular gamma-ray burst (GRB) models. During the evolution of many GRB progenitors, a disk around the central GRB source is produced. Shock heating as the GRB ejecta collide with the disk may produce observable X-ray features. We first summarize predictions deduced from previous calculations which invoke photoionization and relativistic blast waves. We then calculate the quasi-thermal X-ray line features produced assuming the ejecta are nonrelativistic (which is more likely for the disk interactions of many GRB models). In the framework of the Hypernova/Collapsar model, delayed (a few days - several months after the GRB) bursts of line-dominated, thermal X-ray emission may be expected. The He-merger scenario predicts similar X-ray emission line bursts <~ a few days after the GRB. These X-ray signatures should be observable with Chandra and XMM-Newton out to at least z ~ 1. Weak emission line features <~ a few days after the GRB may also result from the supranova GRB scenario. In all three cases, significant X-ray absorption features, in particular during the prompt GRB phase, are expected. No significant X-ray spectral features might result from compact-object binary mergers.Comment: 20 pages, including 8 figures and 3 tables. Uses epsf.sty, rotate.sty. Final version, accepted for publication in to ApJ. Revised analytical estimate of maximum emission line luminosity. Numerical results and conclusions unchange

    Violent Hard X-ray Variability of Mrk 421 Observed by NuSTAR in 2013 April

    Full text link
    The well studied blazar Markarian 421 (Mrk 421, zz=0.031) was the subject of an intensive multi-wavelength campaign when it flared in 2013 April. The recorded X-ray and very high energy (VHE, E>>100 GeV) Îł\gamma-ray fluxes are the highest ever measured from this object. At the peak of the activity, it was monitored by the hard X-ray focusing telescope {\it Nuclear Spectroscopic Telescope Array} ({\it NuSTAR}) and {\it Swift} X-Ray Telescope (XRT). In this work, we present a detailed variability analysis of {\it NuSTAR} and {\it Swift}-XRT observations of Mrk 421 during this flaring episode. We obtained the shortest flux doubling time of 14.01±\pm5.03 minutes, which is the shortest hard X-ray (3−-79 keV) variability ever recorded from Mrk 421 and is on the order of the light crossing time of the black hole's event horizon. A pattern of extremely fast variability events superposed on slowly varying flares is found in most of the {\it NuSTAR} observations. We suggest that these peculiar variability patterns may be explained by magnetic energy dissipation and reconnection in a fast moving compact emission region within the jet. Based on the fast variability, we derive a lower limit on the magnetic field strength of B≄0.73ÎŽ1−2/3 Μ191/3B \ge 0.73 \delta_1^{-2/3} \, \nu_{19}^{1/3}~G, where ÎŽ1\delta_1 is the Doppler factor in units of 10, and Îœ19\nu_{19} is the characteristic X-ray synchrotron frequency in units of 101910^{19}~Hz.Comment: 23 pages, 5 figures, 2 tables, to appear in the Astrophysical Journa

    Photon-Photon Absorption of Very High Energy Gamma-Rays from Microquasars: Application to LS 5039

    Full text link
    Very high energy (VHE) gamma-rays have recently been detected from the Galactic black-hole candidate and microquasar LS 5039. A plausible site for the production of these VHE gamma-rays is the region close to the mildly relativistic outflow. However, at distances comparable to the binary separation, the intense photon field of the stellar companion will lead to substantial gamma-gamma absorption of VHE gamma-rays. If the system is viewed at a substantial inclination (i > 0), this absorption feature will be modulated on the orbital period of the binary as a result of a phase-dependent stellar-radiation intensity and pair-production threshold. We apply our results to LS 5039 and find that (1) gamma-gamma absorption effects will be substantial if the photon production site is located at a distance from the central compact object of the order of the binary separation (~ 2.5e12 cm) or less; (2) the gamma-gamma absorption depth will be largest at a few hundred GeV, leading to a characteristic absorption trough; (3) the gamma-gamma absorption feature will be strongly modulated on the orbital period of the binary, characterized by a spectral hardening accompanying periodic dips of the VHE gamma-ray flux; and (4) gamma rays can escape virtually unabsorbed, even from within ~ 10^{12} cm, when the star is located behind the production site as seen by the observer.Comment: Submitted to ApJ Letters. AASTeX, 12 ms pages, including 4 eps figure

    The synchrotron peak shift during high-energy flares of blazars

    Get PDF
    A prediction for the energy shift of the synchrotron spectrum of flat-spectrum radio quasars (FSRQs) during high-energy flares is presented. If the Îł\gamma-ray emission of FSRQs is produced by Comptonization of external radiation, then the peak of the synchrotron spectrum is predicted to move to lower energies in the flare state. This is opposite to the well-known broadband spectral behavior of high-frequency peaked BL-Lac objects where the external radiation field is believed to be weak and synchrotron-self Compton scattering might be the dominant Îł\gamma-ray radiation mechanism. The synchrotron peak shift, if observed in FSRQs, can thus be used as a diagnostic to determine the dominant radiation mechanism in these objects. I suggest a few FSRQs as promising candidates to test the prediction of the external-Comptonization model.Comment: 9 pages, including 2 figures; uses epsf.sty, rotate.sty; accepted for ApJ Letters; minor revision

    Monte-Carlo simulations of thermal/nonthermal radiation from a neutron-star magnetospheric accretion shell

    Full text link
    We discuss the space-and-time-dependent Monte Carlo code we have developed to simulate the relativistic radiation output from compact astrophysical objects, coupled to a Fokker-Planck code to determine the self-consistent lepton populations. We have applied this code to model the emission from a magnetized neutron star accretion shell near the Alfven radius, reprocessing the radiation from the neutron sar surface. We explore the parameter space defined by the accretion rate, stellar surface field and the level of wave turbulence in the shell. Our results are relevant to the emission from atoll sources, soft-X-ray transient X-ray binaries containing weakly magnetized neutron stars, and to recently suggested models of accretion-powered emission from anomalous X-ray pulsars.Comment: 24 pages, including 7 figures; uses epsf.sty. final version, accepted for publication in ApJ. Extended introduction and discussio

    Spectral Energy Distributions of Gamma Ray Bursts Energized by External Shocks

    Get PDF
    Sari, Piran, and Narayan have derived analytic formulas to model the spectra from gamma-ray burst blast waves that are energized by sweeping up material from the surrounding medium. We extend these expressions to apply to general radiative regimes and to include the effects of synchrotron self-absorption. Electron energy losses due to the synchrotron self-Compton process are also treated in a very approximate way. The calculated spectra are compared with detailed numerical simulation results. We find that the spectral and temporal breaks from the detailed numerical simulation are much smoother than the analytic formulas imply, and that the discrepancies between the analytic and numerical results are greatest near the breaks and endpoints of the synchrotron spectra. The expressions are most accurate (within a factor of ~ 3) in the optical/X-ray regime during the afterglow phase, and are more accurate when epsilon_e, the fraction of swept-up particle energy that is transferred to the electrons, is <~ 0.1. The analytic results provide at best order-of-magnitude accuracy in the self-absorbed radio/infrared regime, and give poor fits to the self-Compton spectra due to complications from Klein-Nishina effects and photon-photon opacity.Comment: 16 pages, 7 figures, ApJ, in press, 537, July 1, 2000. Minor changes in response to referee report, corrected figure

    X-ray Spectral Signatures of the Photon Bubble Model for Ultraluminous X-ray Sources

    Full text link
    The nature of ultraluminous X-ray sources in nearby galaxies is one of the major open questions in modern X-ray astrophysics. One possible explanation for these objects is an inhomogeneous, radiation dominated accretion disk around a ∌10M⊙\sim 10 M_{\odot} black hole -- the so-called ``photon bubble'' model. While previous studies of this model have focused primarily on its radiation-hydrodynamics aspects, in this paper, we provide an analysis of its X-ray spectral (continuum and possible edge and line) characteristics. Compton reflection between high and low density regions in the disk may provide the key to distinguishing this model from others, such as accretion onto an intermediate mass black hole. We couple a Monte Carlo/Fokker-Planck radiation transport code with the XSTAR code for reflection to simulate the photon spectra produced in a photon bubble model for ULXs. We find that reflection components tend to be very weak and in most cases not observable, and make predictions for the shape of the high-energy Comptonizing spectra. In many cases the Comptonization dominates the spectra even down to ∌\sim a few keV. In one simulation, a \sim 9 \kev feature was found, which may be considered a signature of photon bubbles in ULXs; furthermore, we make predictions of high energy power-laws which may be observed by future instruments.Comment: Accepted for publication in the Astrophysical Journa
    • 

    corecore