474 research outputs found

    Synchronization of organ pipes

    Full text link
    We investigate synchronization of coupled organ pipes. Synchronization and reflection in the organ lead to undesired weakening of the sound in special cases. Recent experiments have shown that sound interaction is highly complex and nonlinear, however, we show that two delay-coupled Van-der-Pol oscillators appear to be a good model for the occurring dynamical phenomena. Here the coupling is realized as distance-dependent, or time-delayed, equivalently. Analytically, we investigate the synchronization frequency and bifurcation scenarios which occur at the boundaries of the Arnold tongues. We successfully compare our results to experimental data

    Learning Optimal Control of Synchronization in Networks of Coupled Oscillators using Genetic Programming-based Symbolic Regression

    Full text link
    Networks of coupled dynamical systems provide a powerful way to model systems with enormously complex dynamics, such as the human brain. Control of synchronization in such networked systems has far reaching applications in many domains, including engineering and medicine. In this paper, we formulate the synchronization control in dynamical systems as an optimization problem and present a multi-objective genetic programming-based approach to infer optimal control functions that drive the system from a synchronized to a non-synchronized state and vice-versa. The genetic programming-based controller allows learning optimal control functions in an interpretable symbolic form. The effectiveness of the proposed approach is demonstrated in controlling synchronization in coupled oscillator systems linked in networks of increasing order complexity, ranging from a simple coupled oscillator system to a hierarchical network of coupled oscillators. The results show that the proposed method can learn highly-effective and interpretable control functions for such systems.Comment: Submitted to nonlinear dynamic
    • …
    corecore