602 research outputs found
Experimental and regional variations in Na+-dependent and Na+-independent phosphate transport along the rat small intestine and colon
Despite the importance of extracellular phosphate in many essential biological processes, the mechanisms of phosphate transport across the epithelium of different intestinal segments remain unclear. We have used an in vitro method to investigate phosphate transport at the brush border membrane (BBM) of intact intestinal segments and an in vivo method to study transepithelial phosphate absorption. We have used micromolar phosphate concentrations known to favor NaPi-IIb-mediated transport, and millimolar concentrations that are representative of the levels we have measured in luminal contents, to compare the extent of Na(+)-dependent and Na(+)-independent phosphate transport along the rat duodenum, jejunum, ileum, and proximal and distal colon. Our findings confirm that overall the jejunum is the main site of phosphate absorption; however, at millimolar concentrations, absorption shows ~30% Na(+)-dependency, suggesting that transport is unlikely to be mediated exclusively by the Na(+)-dependent NaPi-IIb co-transporter. In the ileum, studies in vitro confirmed that relatively low levels of phosphate transport occur at the BBM of this segment, although significant Na(+)-dependent transport was detected using millimolar levels of phosphate in vivo. Since NaPi-IIb protein is not detectable at the rat ileal BBM, our data suggest the presence of an as yet unidentified Na(+)-dependent uptake pathway in this intestinal segment in vivo. In addition, we have confirmed that the colon has a significant capacity for phosphate absorption. Overall, this study highlights the complexities of intestinal phosphate absorption that can be revealed using different phosphate concentrations and experimental techniques
Squirrelpox virus: assessing prevalence, transmission and environmental degradation
Red squirrels (Sciurus vulgaris) declined in Great Britain and Ireland during the last century, due to habitat loss and the introduction of grey squirrels (Sciurus carolinensis), which competitively exclude the red squirrel and act as a reservoir for squirrelpox virus (SQPV). The disease is generally fatal to red squirrels and their ecological replacement by grey squirrels is up to 25 times faster where the virus is present. We aimed to determine: (1) the seropositivity and prevalence of SQPV DNA in the invasive and native species at a regional scale; (2) possible SQPV transmission routes; and, (3) virus degradation rates under differing environmental conditions. Grey (n = 208) and red (n = 40) squirrel blood and tissues were sampled. Enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qPCR) techniques established seropositivity and viral DNA presence, respectively. Overall 8% of squirrels sampled (both species combined) had evidence of SQPV DNA in their tissues and 22% were in possession of antibodies. SQPV prevalence in sampled red squirrels was 2.5%. Viral loads were typically low in grey squirrels by comparison to red squirrels. There was a trend for a greater number of positive samples in spring and summer than in winter. Possible transmission routes were identified through the presence of viral DNA in faeces (red squirrels only), urine and ectoparasites (both species). Virus degradation analyses suggested that, after 30 days of exposure to six combinations of environments, there were more intact virus particles in scabs kept in warm (25°C) and dry conditions than in cooler (5 and 15°C) or wet conditions. We conclude that SQPV is present at low prevalence in invasive grey squirrel populations with a lower prevalence in native red squirrels. Virus transmission could occur through urine especially during warm dry summer conditions but, more notably, via ectoparasites, which are shared by both species
Visual parameter optimisation for biomedical image processing
Background: Biomedical image processing methods require users to optimise input parameters to ensure high quality
output. This presents two challenges. First, it is difficult to optimise multiple input parameters for multiple
input images. Second, it is difficult to achieve an understanding of underlying algorithms, in particular, relationships
between input and output.
Results: We present a visualisation method that transforms users’ ability to understand algorithm behaviour by
integrating input and output, and by supporting exploration of their relationships. We discuss its application to a
colour deconvolution technique for stained histology images and show how it enabled a domain expert to
identify suitable parameter values for the deconvolution of two types of images, and metrics to quantify
deconvolution performance. It also enabled a breakthrough in understanding by invalidating an underlying
assumption about the algorithm.
Conclusions: The visualisation method presented here provides analysis capability for multiple inputs and outputs
in biomedical image processing that is not supported by previous analysis software. The analysis supported by our
method is not feasible with conventional trial-and-error approaches
Hypoglycemia in Non-Diabetic In-Patients: Clinical or Criminal?
BACKGROUND AND AIM: We wished to establish the frequency of unexpected hypoglycemia observed in non diabetic patients outside the intensive care unit and to determine if they have a plausible clinical explanation. METHODS: We analysed data for 2010 from three distinct sources to identify non diabetic hypoglycaemic patients: bedside and laboratory blood glucose measurements; medication records for those treatments (high-strength glucose solution and glucagon) commonly given to reverse hypoglycemia; and diagnostic codes for hypoglycemia. We excluded from the denominator admissions of patients with a diagnosis of diabetes or prescribed diabetic medication. Case notes of patients identified were reviewed. We used capture-recapture methods to establish the likely frequency of hypoglycemia in non-diabetic in-patients outside intensive care unit at different cut-off points for hypoglycemia. We also recorded co-morbidities that might have given rise to hypoglycemia. RESULTS: Among the 37,898 admissions, the triggers identified 71 hypoglycaemic episodes at a cut-off of 3.3 mmol/l. Estimated frequency at 3.3 mmol/l was 50(CI 33-93), at 3.0 mmol/l, 36(CI 24-64), at 2.7 mmol/l, 13(CI 11-19), at 2.5 mmol/l, 11(CI 9-15) and at 2.2 mmol/l, 8(CI 7-11) per 10,000 admissions. Admissions of patients aged above 65 years were approximately 50% more likely to have an episode of hypoglycemia. Most were associated with important co-morbidities. CONCLUSION: Significant non-diabetic hypoglycemia in hospital in-patients (at or below 2.7 mmol/l) outside critical care is rare. It is sufficiently rare for occurrences to merit case-note review and diagnostic blood tests, unless an obvious explanation is found
The stellar and sub-stellar IMF of simple and composite populations
The current knowledge on the stellar IMF is documented. It appears to become
top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr
pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing
metallicity and in increasingly massive early-type galaxies. It declines quite
steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars
having their own IMF. The most massive star of mass mmax formed in an embedded
cluster with stellar mass Mecl correlates strongly with Mecl being a result of
gravitation-driven but resource-limited growth and fragmentation induced
starvation. There is no convincing evidence whatsoever that massive stars do
form in isolation. Various methods of discretising a stellar population are
introduced: optimal sampling leads to a mass distribution that perfectly
represents the exact form of the desired IMF and the mmax-to-Mecl relation,
while random sampling results in statistical variations of the shape of the
IMF. The observed mmax-to-Mecl correlation and the small spread of IMF
power-law indices together suggest that optimally sampling the IMF may be the
more realistic description of star formation than random sampling from a
universal IMF with a constant upper mass limit. Composite populations on galaxy
scales, which are formed from many pc scale star formation events, need to be
described by the integrated galactic IMF. This IGIMF varies systematically from
top-light to top-heavy in dependence of galaxy type and star formation rate,
with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and
Galactic Structure, Vol.5, Springer. This revised version is consistent with
the published version and includes additional references and minor additions
to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-
Hedgehog pathway mutations drive oncogenic transformation in high-risk T-cell acute lymphoblastic leukemia.
The role of Hedgehog signaling in normal and malignant T-cell development is controversial. Recently, Hedgehog pathway mutations have been described in T-ALL, but whether mutational activation of Hedgehog signaling drives T-cell transformation is unknown, hindering the rationale for therapeutic intervention. Here, we show that Hedgehog pathway mutations predict chemotherapy resistance in human T-ALL, and drive oncogenic transformation in a zebrafish model of the disease. We found Hedgehog pathway mutations in 16% of 109 childhood T-ALL cases, most commonly affecting its negative regulator PTCH1. Hedgehog mutations were associated with resistance to induction chemotherapy (P = 0.009). Transduction of wild-type PTCH1 into PTCH1-mutant T-ALL cells induced apoptosis (P = 0.005), a phenotype that was reversed by downstream Hedgehog pathway activation (P = 0.007). Transduction of most mutant PTCH1, SUFU, and GLI alleles into mammalian cells induced aberrant regulation of Hedgehog signaling, indicating that these mutations are pathogenic. Using a CRISPR/Cas9 system for lineage-restricted gene disruption in transgenic zebrafish, we found that ptch1 mutations accelerated the onset of notch1-induced T-ALL (P = 0.0001), and pharmacologic Hedgehog pathway inhibition had therapeutic activity. Thus, Hedgehog-activating mutations are driver oncogenic alterations in high-risk T-ALL, providing a molecular rationale for targeted therapy in this disease
PON1 and Neurodevelopment in Children from the CHAMACOS Study Exposed to Organophosphate Pesticides in Utero
BackgroundParaoxonase 1 (PON1) detoxifies oxon derivatives of some organophosphate (OP) pesticides, and its genetic polymorphisms influence enzyme activity and quantity. We previously reported that maternal urinary concentrations of dialkyl phosphate (DAP) metabolites, a marker of OP pesticide exposure, were related to poorer mental development and maternally reported symptoms consistent with pervasive developmental disorder (PDD) in 2-year-olds participating in the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) study.ObjectiveWe determined whether PON1 genotypes and enzyme measurements were associated with child neurobehavioral development and whether PON1 modified the association of in utero exposure to OPs (as assessed by maternal DAPs) and neurobehavior.MethodsWe measured DAP concentrations in maternal urine during pregnancy, PON1₁₉₂ and PON1₋₁₀₈ genotypes in mothers and children, and arylesterase (ARYase) and paraoxonase (POase) in maternal, cord, and 2-year-olds' blood. We assessed 353 2-year-olds on the Mental Development Index (MDI) and Psychomotor Development Index (PDI) of the Bayley Scales of Infant Development and queried their mothers on the Child Behavior Checklist to obtain a score for PDD.ResultsChildren with the PON1(-108T) allele had poorer MDI scores and somewhat poorer PDI scores. Children were less likely to display PDD when they or their mothers had higher ARYase activity and when their mothers had higher POase activity. The association between DAPs and MDI scores was strongest in children with PON1(-108T) allele, but this and other interactions between DAPs and PON1 polymorphisms or enzymes were not significant.ConclusionPON1 was associated with child neurobehavioral development, but additional research is needed to confirm whether it modifies the relation with in utero OP exposure
Psychopathology predicts the outcome of medial branch blocks with corticosteroid for chronic axial low back or cervical pain: a prospective cohort study
<p>Abstract</p> <p>Background</p> <p>Comorbid psychopathology is an important predictor of poor outcome for many types of treatments for back or neck pain. But it is unknown if this applies to the results of medial branch blocks (MBBs) for chronic low back or neck pain, which involves injecting the medial branch of the dorsal ramus nerves that innervate the facet joints. The objective of this study was to determine whether high levels of psychopathology are predictive of pain relief after MBB injections in the lumbar or cervical spine.</p> <p>Methods</p> <p>This was a prospective cohort study. Consecutive patients in a pain medicine practice undergoing MBBs of the lumbar or cervical facets with corticosteroids were recruited to participate. Subjects were selected for a MBB based on operationalized selection criteria and the procedure was performed in a standardized manner. Subjects completed the Brief Pain Inventory (BPI) and the Hospital Anxiety and Depression Scale (HADS) just prior to the procedure and at one-month follow up. Scores on the HADS classified the subjects into three groups based on psychiatric symptoms, which formed the primary predictor variable: <it>Low</it>, <it>Moderate</it>, or <it>High </it>levels of psychopathology. The primary outcome measure was the percent improvement in average daily pain rating one-month following an injection. Analysis of variance and chi-square were used to analyze the analgesia and functional rating differences between groups, and to perform a responder analysis.</p> <p>Results</p> <p>Eighty six (86) subjects completed the study. The <it>Low </it>psychopathology group (n = 37) reported a mean of 23% improvement in pain at one-month while the <it>High </it>psychopathology group (n = 29) reported a mean worsening of -5.8% in pain (p < .001). Forty five percent (45%) of the <it>Low </it>group had at least 30% improvement in pain versus 10% in the <it>High </it>group (p < .001). Using an analysis of covariance, no baseline demographic, social, or medical variables were significant predictors of pain improvement, nor did they mitigate the effect of psychopathology on the outcome.</p> <p>Conclusion</p> <p>Psychiatric comorbidity is associated with diminished pain relief after a MBB injection performed with steroid at one-month follow-up. These findings illustrate the importance of assessing comorbid psychopathology as part of a spine care evaluation.</p
Neutralization of Botulinum Neurotoxin by a Human Monoclonal Antibody Specific for the Catalytic Light Chain
Background: Botulinum neurotoxins (BoNT) are a family of category A select bioterror agents and the most potent biological toxins known. Cloned antibody therapeutics hold considerable promise as BoNT therapeutics, but the therapeutic utility of antibodies that bind the BoNT light chain domain (LC), a metalloprotease that functions in the cytosol of cholinergic neurons, has not been thoroughly explored. Methods and Findings: We used an optimized hybridoma method to clone a fully human antibody specific for the LC of serotype A BoNT (BoNT/A). The 4LCA antibody demonstrated potent in vivo neutralization when administered alone and collaborated with an antibody specific for the HC. In Neuro-2a neuroblastoma cells, the 4LCA antibody prevented the cleavage of the BoNT/A proteolytic target, SNAP-25. Unlike an antibody specific for the HC, the 4LCA antibody did not block entry of BoNT/A into cultured cells. Instead, it was taken up into synaptic vesicles along with BoNT/A. The 4LCA antibody also directly inhibited BoNT/A catalytic activity in vitro. Conclusions: An antibody specific for the BoNT/A LC can potently inhibit BoNT/A in vivo and in vitro, using mechanisms not previously associated with BoNT-neutralizing antibodies. Antibodies specific for BoNT LC may be valuable components o
Anti-tumour activity in vitro and in vivo of selective differentiating agents containing hydroxamate
A series of hydroxamates, which are not metalloprotease inhibitors, have been found to be selectively toxic to a range of transformed and human tumour cells without killing normal cells (fibroblasts, melanocytes) at the same concentrations. Within 24 h of treatment, drug action is characterized by morphological reversion of tumour cells to a more normal phenotype (dendritic morphology), and rapid and reversible acetylation of histone H4 in both tumour and normal cells. Two; hydroxamates inhibited growth of xenografts of human melanoma cells in nude mice; resistance did not develop in vivo or in vitro. A third hydroxamate, trichostatin A, was active in vitro but became inactivated and had no anti-tumour activity in vivo. Development of dendritic morphology was found to be dependent upon phosphatase activity, RNA and protein synthesis. Proliferating hybrid clones of sensitive and resistant cells remained sensitive to ABHA, indicating a dominant-negative mechanism of sensitivity. Histone H4 hyperacetylation suggests that these agents act at the chromatin level. This work may lead to new drugs that are potent, and selective anti-tumour agents with low toxicity to normal Cells
- …