12,593 research outputs found
Expression of Interest ICES/KIS-3 : Thema 4: Hoogwaardig Ruimtegebruik Speerpunt 6
Hoofddoel van dit speerpunt is om zowel de Nederlandse overheid als het bedrijfsleven uit te rusten met een operationele kennisinfrastructuur die toegesneden is op de relatie tussen (antropogene en natuurlijke) klimaatverandering en meervoudig ruimtegebrui
Identification of Hemodynamically Optimal Coronary Stent Designs Based on Vessel Caliber
Coronary stent design influences local patterns of wall shear stress (WSS) that are associated with neointimal growth, restenosis, and the endothelialization of stent struts. The number of circumferentially repeating crowns NC for a given stent de- sign is often modified depending on the target vessel caliber, but the hemodynamic implications of altering NC have not previously been studied. In this investigation, we analyzed the relationship between vessel diameter and the hemodynamically optimal NC using a derivative-free optimization algorithm coupled with computational fluid dynamics. The algorithm computed the optimal vessel diameter, defined as minimizing the area of stent-induced low WSS, for various configurations (i.e., NC) of a generic slotted-tube design and designs that resemble commercially available stents. Stents were modeled in idealized coronary arteries with a vessel diameter that was allowed to vary between 2 and 5 mm. The results indicate that the optimal vessel diameter increases for stent configurations with greater NC, and the designs of current commercial stents incorporate a greater NC than hemodynamically optimal stent designs. This finding suggests that reducing the NC of current stents may improve the hemodynamic environment within stented arteries and reduce the likelihood of excessive neointimal growth and thrombus formation
Knot undulator to generate linearly polarized photons with low on-axis power density
Heat load on beamline optics is a serious problem to generate pure linearly
polarized photons in the third generation synchrotron radiation facilities. For
permanent magnet undulators, this problem can be overcome by a figure-8
operating mode. But there is still no good method to tackle this problem for
electromagnetic elliptical undulators. Here, a novel operating mode is
suggested, which can generate pure linearly polarized photons with very low
on-axis heat load. Also the available minimum photon energy of linearly
polarized photons can be extended much by this method
Image-based Quantification of 3D Morphology for Bifurcations in the Left Coronary Artery: Application to Stent Design
Background
Improved strategies for stent‐based treatment of coronary artery disease at bifurcations require a greater understanding of artery morphology. Objective
We developed a workflow to quantify morphology in the left main coronary (LMCA), left anterior descending (LAD), and left circumflex (LCX) artery bifurcations. Methods
Computational models of each bifurcation were created for 55 patients using computed tomography images in 3D segmentation software. Metrics including cross‐sectional area, length, eccentricity, taper, curvature, planarity, branching law parameters, and bifurcation angles were assessed using open‐sources software and custom applications. Geometric characterization was performed by comparison of means, correlation, and linear discriminant analysis (LDA). Results
Differences between metrics suggest dedicated or multistent approaches should be tailored for each bifurcation. For example, the side branch of the LCX (i.e., obtuse marginal; OM) was longer than that of the LMCA (i.e., LCXprox) and LAD (i.e., first diagonal; D1). Bifurcation metrics for some locations (e.g., LMCA Finet ratio) provide results and confidence intervals agreeing with prior findings, while revised metric values are presented for others (e.g., LAD and LCX). LDA revealed several metrics that differentiate between artery locations (e.g., LMCA vs. D1, LMCA vs. OM, LADprox vs. D1, and LCXprox vs. D1). Conclusions
These results provide a foundation for elucidating common parameters from healthy coronary arteries and could be leveraged in the future for treating diseased arteries. Collectively the current results may ultimately be used for design iterations that improve outcomes following implantation of future dedicated bifurcation stents
Molecular dynamics simulations of lead clusters
Molecular dynamics simulations of nanometer-sized lead clusters have been
performed using the Lim, Ong and Ercolessi glue potential (Surf. Sci. {\bf
269/270}, 1109 (1992)). The binding energies of clusters forming crystalline
(fcc), decahedron and icosahedron structures are compared, showing that fcc
cuboctahedra are the most energetically favoured of these polyhedral model
structures. However, simulations of the freezing of liquid droplets produced a
characteristic form of ``shaved'' icosahedron, in which atoms are absent at the
edges and apexes of the polyhedron. This arrangement is energetically favoured
for 600-4000 atom clusters. Larger clusters favour crystalline structures.
Indeed, simulated freezing of a 6525-atom liquid droplet produced an imperfect
fcc Wulff particle, containing a number of parallel stacking faults. The
effects of temperature on the preferred structure of crystalline clusters below
the melting point have been considered. The implications of these results for
the interpretation of experimental data is discussed.Comment: 11 pages, 18 figues, new section added and one figure added, other
minor changes for publicatio
Surface-reconstructed Icosahedral Structures for Lead Clusters
We describe a new family of icosahedral structures for lead clusters. In
general, structures in this family contain a Mackay icosahedral core with a
reconstructed two-shell outer-layer. This family includes the anti-Mackay
icosahedra, which have have a Mackay icosahedral core but with most of the
surface atoms in hexagonal close-packed positions. Using a many-body glue
potential for lead, we identify two icosahedral structures in this family which
have the lowest energies of any known structure in the size range from 900 to
15000 lead atoms. We show that these structures are stabilized by a feature of
the many-body glue part of the interatomic potential.Comment: 9 pages, 8 figure
Linear models of activation cascades: analytical solutions and coarse-graining of delayed signal transduction
Cellular signal transduction usually involves activation cascades, the
sequential activation of a series of proteins following the reception of an
input signal. Here we study the classic model of weakly activated cascades and
obtain analytical solutions for a variety of inputs. We show that in the
special but important case of optimal-gain cascades (i.e., when the
deactivation rates are identical) the downstream output of the cascade can be
represented exactly as a lumped nonlinear module containing an incomplete gamma
function with real parameters that depend on the rates and length of the
cascade, as well as parameters of the input signal. The expressions obtained
can be applied to the non-identical case when the deactivation rates are random
to capture the variability in the cascade outputs. We also show that cascades
can be rearranged so that blocks with similar rates can be lumped and
represented through our nonlinear modules. Our results can be used both to
represent cascades in computational models of differential equations and to fit
data efficiently, by reducing the number of equations and parameters involved.
In particular, the length of the cascade appears as a real-valued parameter and
can thus be fitted in the same manner as Hill coefficients. Finally, we show
how the obtained nonlinear modules can be used instead of delay differential
equations to model delays in signal transduction.Comment: 18 pages, 7 figure
Traps of multi-level governance. Lessons from the implementation of the Water Framework Directive in Italy
During recent decades, different patterns of multi-level governance (MLG) have spread across Europe as a consequence of Europeanisation of public policies, which have increasingly adopted decentralized and participatory procedures conceived as a tool of more effective and accountable policy-making. It appears, however, that the implementation of operational designs based on MLG may be rather problematic and it does not necessarily bring to the expected performance improvements. Referring to the case of the EU Water Framework Directive (2000/60/EC), which conceives the creation of new multi-level institutional settings as a key tool for enacting a new holistic approach to water management and protection, this article explores the difficulties that the implementation of such settings has brought in Italy, despite some favorable pre-conditions existing in the country. Evidence is provided that along with institutional and agency variables, the implementation effectiveness of MLG arrangements promoted by the EU can be challenged by their inherent characteristics
Medical data processing and analysis for remote health and activities monitoring
Recent developments in sensor technology, wearable computing, Internet of Things (IoT), and wireless communication have given rise to research in ubiquitous healthcare and remote monitoring of human\u2019s health and activities. Health monitoring systems involve processing and analysis of data retrieved from smartphones, smart watches, smart bracelets, as well as various sensors and wearable devices. Such systems enable continuous monitoring of patients psychological and health conditions by sensing and transmitting measurements such as heart rate, electrocardiogram, body temperature, respiratory rate, chest sounds, or blood pressure. Pervasive healthcare, as a relevant application domain in this context, aims at revolutionizing the delivery of medical services through a medical assistive environment and facilitates the independent living of patients. In this chapter, we discuss (1) data collection, fusion, ownership and privacy issues; (2) models, technologies and solutions for medical data processing and analysis; (3) big medical data analytics for remote health monitoring; (4) research challenges and opportunities in medical data analytics; (5) examples of case studies and practical solutions
- …