15,291 research outputs found

    Cost effectiveness analysis of different approaches of screening for familial hypercholesterolaemia

    Get PDF
    Objectives To assess the cost effectiveness of strategies to screen for and treat familial hypercholesterolaemia. Design Cost effectiveness analysis. A care pathway for each patient was delineated and the associated probabilities, benefits, and costs were calculated. Participants Simulated population aged 16­54 years in England and Wales. Interventions Identification and treatment of patients with familial hypercholesterolaemia by universal screening, opportunistic screening in primary care, screening of people admitted to hospital with premature myocardial infarction, or tracing family members of affected patients. Main outcome measure Cost effectiveness calculated as cost per life year gained (extension of life expectancy resulting from intervention) including estimated costs of screening and treatment. Results Tracing of family members was the most cost effective strategy (£3097 (&5066, $4479) per life year gained) as 2.6 individuals need to be screened to identify one case at a cost of £133 per case detected. If the genetic mutation was known within the family then the cost per life year gained (£4914) was only slightly increased by genetic confirmation of the diagnosis. Universal population screening was least cost effective (£13 029 per life year gained) as 1365 individuals need to be screened at a cost of £9754 per case detected. For each strategy it was more cost effective to screen younger people and women. Targeted strategies were more expensive per person screened, but the cost per case detected was lower. Population screening of 16 year olds only was as cost effective as family tracing (£2777 with a clinical confirmation). Conclusions Screening family members of people with familial hypercholesterolaemia is the most cost effective option for detecting cases across the whole population

    Applications of M.G. Krein's Theory of Regular Symmetric Operators to Sampling Theory

    Full text link
    The classical Kramer sampling theorem establishes general conditions that allow the reconstruction of functions by mean of orthogonal sampling formulae. One major task in sampling theory is to find concrete, non trivial realizations of this theorem. In this paper we provide a new approach to this subject on the basis of the M. G. Krein's theory of representation of simple regular symmetric operators having deficiency indices (1,1). We show that the resulting sampling formulae have the form of Lagrange interpolation series. We also characterize the space of functions reconstructible by our sampling formulae. Our construction allows a rigorous treatment of certain ideas proposed recently in quantum gravity.Comment: 15 pages; v2: minor changes in abstract, addition of PACS numbers, changes in some keywords, some few changes in the introduction, correction of the proof of the last theorem, and addition of some comments at the end of the fourth sectio

    RHEBI Expression in Embryonic and Postnatal Mouse

    Full text link
    Ras homolog enriched in brain (RHEB1) is a member within the superfamily of GTP-binding proteins encoded by the RAS oncogenes. RHEB1 is located at the crossroad of several important pathways including the insulin-signaling pathways and thus plays an important role in different physiological processes. To understand better the physiological relevance of RHEB1 protein, the expres- sion pattern of RHEB1 was analyzed in both embryonic (at E3.5–E16.5) and adult (1-month old) mice. RHEB1 immu- nostaining and X-gal staining were used for wild-type and Rheb1 gene trap mutant mice, respectively. These inde- pendent methods revealed similar RHEB1 expression pat- terns during both embryonic and postnatal developments. Ubiquitous uniform RHEB1/β-gal and/or RHEB1 expres- sion was seen in preimplantation embryos at E3.5 and post- implantation embryos up to E12.5. Between stages E13.5 and E16.5, RHEB1 expression levels became complex: In particular, strong expression was identified in neural tis- sues, including the neuroepithelial layer of the mesenceph- alon, telencephalon, and neural tube of CNS and dorsal root ganglia. In addition, strong expression was seen in certain peripheral tissues including heart, intestine, muscle, and urinary bladder. Postnatal mice have broad spatial RHEB1 expression in different regions of the cerebral cortex, sub- cortical regions (including hippocampus), olfactory bulb, medulla oblongata, and cerebellum (particularly in Purkinje cells). Significant RHEB1 expression was also viewed in internal organs including the heart, intestine, urinary blad- der, and muscle. Moreover, adult animals have complex tis- sue- and organ-specific RHEB1 expression patterns with different intensities observed throughout postnatal develop- ment. Its expression level is in general comparable in CNS and other organs of mouse. Thus, the expression pattern of RHEB1 suggests that it likely plays a ubiquitous role in the development of the early embryo with more tissue-specific roles in later development

    RHEB1 Expression in Embryonic and Postnatal Mouse

    Full text link
    Ras homolog enriched in brain (RHEB1) is a member within the superfamily of GTP-binding proteins encoded by the RAS oncogenes. RHEB1 is located at the crossroad of several important pathways including the insulin-signaling pathways and thus plays an important role in different physiological processes. To understand better the physiological relevance of RHEB1 protein, the expres-sion pattern of RHEB1 was analyzed in both embryonic (at E3.5–E16.5) and adult (1-month old) mice. RHEB1 immu-nostaining and X-gal staining were used for wild-type and Rheb1 gene trap mutant mice, respectively. These inde-pendent methods revealed similar RHEB1 expression pat-terns during both embryonic and postnatal developments. Ubiquitous uniform RHEB1/β-gal and/or RHEB1 expres-sion was seen in preimplantation embryos at E3.5 and post-implantation embryos up to E12.5. Between stages E13.5 and E16.5, RHEB1 expression levels became complex: In particular, strong expression was identified in neural tis-sues, including the neuroepithelial layer of the mesenceph-alon, telencephalon, and neural tube of CNS and dorsal root ganglia. In addition, strong expression was seen in certain peripheral tissues including heart, intestine, muscle, and urinary bladder. Postnatal mice have broad spatial RHEB1 expression in different regions of the cerebral cortex, sub-cortical regions (including hippocampus), olfactory bulb, medulla oblongata, and cerebellum (particularly in Purkinje cells). Significant RHEB1 expression was also viewed in internal organs including the heart, intestine, urinary blad-der, and muscle. Moreover, adult animals have complex tis-sue- and organ-specific RHEB1 expression patterns with different intensities observed throughout postnatal develop-ment. Its expression level is in general comparable in CNS and other organs of mouse. Thus, the expression pattern of RHEB1 suggests that it likely plays a ubiquitous role in the development of the early embryo with more tissue-specific roles in later development

    Traps of multi-level governance. Lessons from the implementation of the Water Framework Directive in Italy

    Get PDF
    During recent decades, different patterns of multi-level governance (MLG) have spread across Europe as a consequence of Europeanisation of public policies, which have increasingly adopted decentralized and participatory procedures conceived as a tool of more effective and accountable policy-making. It appears, however, that the implementation of operational designs based on MLG may be rather problematic and it does not necessarily bring to the expected performance improvements. Referring to the case of the EU Water Framework Directive (2000/60/EC), which conceives the creation of new multi-level institutional settings as a key tool for enacting a new holistic approach to water management and protection, this article explores the difficulties that the implementation of such settings has brought in Italy, despite some favorable pre-conditions existing in the country. Evidence is provided that along with institutional and agency variables, the implementation effectiveness of MLG arrangements promoted by the EU can be challenged by their inherent characteristics

    Uncomputably noisy ergodic limits

    Get PDF
    V'yugin has shown that there are a computable shift-invariant measure on Cantor space and a simple function f such that there is no computable bound on the rate of convergence of the ergodic averages A_n f. Here it is shown that in fact one can construct an example with the property that there is no computable bound on the complexity of the limit; that is, there is no computable bound on how complex a simple function needs to be to approximate the limit to within a given epsilon

    Isotopic dependence of the giant monopole resonance in the even-A ^{112-124}Sn isotopes and the asymmetry term in nuclear incompressibility

    Full text link
    The strength distributions of the giant monopole resonance (GMR) have been measured in the even-A Sn isotopes (A=112--124) with inelastic scattering of 400-MeV α\alpha particles in the angular range 0∘0^\circ--8.5∘8.5^\circ. We find that the experimentally-observed GMR energies of the Sn isotopes are lower than the values predicted by theoretical calculations that reproduce the GMR energies in 208^{208}Pb and 90^{90}Zr very well. From the GMR data, a value of Kτ=−550±100K_{\tau} = -550 \pm 100 MeV is obtained for the asymmetry-term in the nuclear incompressibility.Comment: Submitted to Physical Review Letters. 10 pages; 4 figure

    Atomic-scale structure of the SrTiO3(001)-c(6x2) reconstruction: Experiments and first-principles calculations

    Get PDF
    The c(6x2) is a reconstruction of the SrTiO3(001) surface that is formed between 1050-1100oC in oxidizing annealing conditions. This work proposes a model for the atomic structure for the c(6x2) obtained through a combination of results from transmission electron diffraction, surface x-ray diffraction, direct methods analysis, computational combinational screening, and density functional theory. As it is formed at high temperatures, the surface is complex and can be described as a short-range ordered phase featuring microscopic domains composed of four main structural motifs. Additionally, non-periodic TiO2 units are present on the surface. Simulated scanning tunneling microscopy images based on the electronic structure calculations are consistent with experimental images
    • …
    corecore