544 research outputs found

    High-Precision Observable Estimation with Single Qubit Quantum Memory

    Full text link
    The estimation of multi-qubit observables is a key task in quantum information science. The standard approach is to decompose a multi-qubit observable into a weighted sum of Pauli strings. The observable can then be estimated from projective single qubit measurements according to the Pauli strings followed by a classical summation. As the number of Pauli strings in the decomposition increases, shot-noise drastically builds up, and the accuracy of such estimation can be considerably compromised. Access to a single qubit quantum memory, where measurement data may be stored and accumulated can circumvent the build-up of shot noise. Here, we describe a many-qubit observable estimation approach to achieve this with a much lower number of interactions between the multi-qubit device and the single qubit memory compared to previous approaches. Our algorithm offers a reduction in the required number of measurements for a given target variance that scales N23N^{\frac{2}{3}} with the number of Pauli strings NN in the observable decomposition. The low number of interactions between the multi-qubit device and the memory is desirable for noisy intermediate-scale quantum devices.Comment: 20 pages, 4 figures, 1 table. arXiv admin note: text overlap with arXiv:2212.0771

    Ferromagnetic Domain Structure of La0.78Ca0.22MnO3 Single Crystals

    Full text link
    The magneto-optical technique has been employed to observe spontaneous ferromagnetic domain structures in La0.78Ca0.22MnO3 single crystals. The magnetic domain topology was found to be correlated with the intrinsic twin structure of the investigated crystals. With decreasing temperature the regular network of ferromagnetic domains undergoes significant changes resulting in apparent rotation of the domain walls in the temperature range of 70-150 K. The apparent rotation of the domain walls can be understood in terms of the Jahn-Teller deformation of the orthorhombic unit cell, accompanied by additional twinning.Comment: 7 pages, 5 figures, to be published in PR

    Green's-function theory of the Heisenberg ferromagnet in a magnetic field

    Full text link
    We present a second-order Green's-function theory of the one- and two-dimensional S=1/2 ferromagnet in a magnetic field based on a decoupling of three-spin operator products, where vertex parameters are introduced and determined by exact relations. The transverse and longitudinal spin correlation functions and thermodynamic properties (magnetization, isothermal magnetic susceptibility, specific heat) are calculated self-consistently at arbitrary temperatures and fields. In addition, exact diagonalizations on finite lattices and, in the one-dimensional case, exact calculations by the Bethe-ansatz method for the quantum transfer matrix are performed. A good agreement of the Green's-function theory with the exact data, with recent quantum Monte Carlo results, and with the spin polarization of a ν=1\nu=1 quantum Hall ferromagnet is obtained. The field dependences of the position and height of the maximum in the temperature dependence of the susceptibility are found to fit well to power laws, which are critically analyzed in relation to the recently discussed behavior in Landau's theory. As revealed by the spin correlation functions and the specific heat at low fields, our theory provides an improved description of magnetic short-range order as compared with the random phase approximation. In one dimension and at very low fields, two maxima in the temperature dependence of the specific heat are found. The Bethe-ansatz data for the field dependences of the position and height of the low-temperature maximum are described by power laws. At higher fields in one and two dimensions, the temperature of the specific heat maximum linearly increases with the field.Comment: 9 pages, 9 figure

    A correlated-polaron electronic propagator: open electronic dynamics beyond the Born-Oppenheimer approximation

    Full text link
    In this work we develop a theory of correlated many-electron dynamics dressed by the presence of a finite-temperature harmonic bath. The theory is based on the ab-initio Hamiltonian, and thus well-defined apart from any phenomenological choice of collective basis states or electronic coupling model. The equation-of-motion includes some bath effects non-perturbatively, and can be used to simulate line- shapes beyond the Markovian approximation and open electronic dynamics which are subjects of renewed recent interest. Energy conversion and transport depend critically on the ratio of electron-electron coupling to bath-electron coupling, which is a fitted parameter if a phenomenological basis of many-electron states is used to develop an electronic equation of motion. Since the present work doesn't appeal to any such basis, it avoids this ambiguity. The new theory produces a level of detail beyond the adiabatic Born-Oppenheimer states, but with cost scaling like the Born-Oppenheimer approach. While developing this model we have also applied the time-convolutionless perturbation theory to correlated molecular excitations for the first time. Resonant response properties are given by the formalism without phenomenological parameters. Example propagations with a developmental code are given demonstrating the treatment of electron-correlation in absorption spectra, vibronic structure, and decay in an open system.Comment: 25 pages 7 figure

    Phase shift rule with the optimal parameter selection

    Full text link
    The phase shift rules enable the estimation of the derivative of a quantum state with respect to phase parameters, providing valuable insights into the behavior and dynamics of quantum systems. This capability is essential in quantum simulation tasks where understanding the behavior of complex quantum systems is of interest, such as simulating chemical reactions or condensed matter systems. However, parameter shift rules are typically designed for Hamiltonian systems with equidistant eigenvalues. For systems with closely spaced eigenvalues, effective rules have not been established. We provide insights about the optimal design of a parameter shift rule, tailored to various sorts of spectral information that may be available. The proposed method lets derivatives be calculated for any system, regardless of how close the eigenvalues are to each other. It also optimizes the number of phase shifts, which reduces the amount of gate resources needed.Comment: 24 pages, 2 figure

    Metastable resistivity of La0.8Ca0.2MnO3 manganite thin films

    Get PDF
    Transport properties of La0.8Ca0.2MnO3 thin films 15 and 130 nm thick have been investigated and confronted with the properties of bulk single crystals of the same composition. It has been found that low-temperature resistivity of the films is sensitive to electric current and/or field treatment and thermal history of the sample. Thin films exhibit a variety of metastable resistive states and spontaneously evolve toward high-resistivity state in which the films exhibit highly nonlinear transport behavior at low temperatures. Nonlinear V-I characteristics are well described by indirect tunneling model. The memory of the resistivity can be, at least partly, erased by a heat treatment at temperatures above the memory erasing temperature. The memory erasing temperature for thin films, T=450 K, is significantly higher than that of single crystals. The results are interpreted in the context of strain driven phase separation. Coexistence of two ferromagnetic phases with different orbital orders and different conductivities is influenced by strains due to thermal cycling and current flow.published_or_final_versio

    Magnetic irreversibility and Verwey transition in nano-crystalline bacterial magnetite

    Get PDF
    The magnetic properties of biologically-produced magnetite nanocrystals biomineralized by four different magnetotactic bacteria were compared to those of synthetic magnetite nanocrystals and large, high quality single crystals. The magnetic feature at the Verwey temperature, TVT_{V}, was clearly seen in all nanocrystals, although its sharpness depended on the shape of individual nanoparticles and whether or not the particles were arranged in magnetosome chains. The transition was broader in the individual superparamagnetic nanoparticles for which TB<TVT_{B}<T_{V}, where TBT_{B} is the superparamagnetic blocking temperature. For the nanocrystals organized in chains, the effective blocking temperature TB>TVT_{B}>T_{V} and the Verwey transition is sharply defined. No correlation between the particle size and TVT_{V} was found. Furthermore, measurements of M(H,T,time)M(H,T,time) suggest that magnetosome chains behave as long magnetic dipoles where the local magnetic field is directed along the chain and this result confirms that time-logarithmic magnetic relaxation is due to the collective (dipolar) nature of the barrier for magnetic moment reorientation

    Transmission tree of the highly pathogenic avian influenza (H5N1) epidemic in Israel, 2015

    Get PDF
    The transmission tree of the Israeli 2015 epidemic of highly pathogenic avian influenza (H5N1) was modelled by combining the spatio-temporal distribution of the outbreaks and the genetic distance between virus isolates. The most likely successions of transmission events were determined and transmission parameters were estimated. It was found that the median infectious pressure exerted at 1 km was 1.59 times (95% CI 1.04, 6.01) and 3.54 times (95% CI 1.09, 131.75) higher than that exerted at 2 and 5 km, respectively, and that three farms were responsible for all seven transmission events. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13567-016-0393-2) contains supplementary material, which is available to authorized users
    corecore