4,491 research outputs found

    Spinning branes in Riemann-Cartan spacetime

    Full text link
    We use the conservation law of the stress-energy and spin tensors to study the motion of massive brane-like objects in Riemann-Cartan geometry. The world-sheet equations and boundary conditions are obtained in a manifestly covariant form. In the particle case, the resultant world-line equations turn out to exhibit a novel spin-curvature coupling. In particular, the spin of a zero-size particle does not couple to the background curvature. In the string case, the world-sheet dynamics is studied for some special choices of spin and torsion. As a result, the known coupling to the Kalb-Ramond antisymmetric external field is obtained. Geometrically, the Kalb-Ramond field has been recognized as a part of the torsion itself, rather than the torsion potential

    In-flight dissipation as a mechanism to suppress Fermi acceleration

    Full text link
    Some dynamical properties of time-dependent driven elliptical-shaped billiard are studied. It was shown that for the conservative time-dependent dynamics the model exhibits the Fermi acceleration [Phys. Rev. Lett. 100, 014103 (2008)]. On the other hand, it was observed that damping coefficients upon collisions suppress such phenomenon [Phys. Rev. Lett. 104, 224101 (2010)]. Here, we consider a dissipative model under the presence of in-flight dissipation due to a drag force which is assumed to be proportional to the square of the particle's velocity. Our results reinforce that dissipation leads to a phase transition from unlimited to limited energy growth. The behaviour of the average velocity is described using scaling arguments.Comment: 4 pages, 5 figure

    A Backtracking-Based Algorithm for Computing Hypertree-Decompositions

    Full text link
    Hypertree decompositions of hypergraphs are a generalization of tree decompositions of graphs. The corresponding hypertree-width is a measure for the cyclicity and therefore tractability of the encoded computation problem. Many NP-hard decision and computation problems are known to be tractable on instances whose structure corresponds to hypergraphs of bounded hypertree-width. Intuitively, the smaller the hypertree-width, the faster the computation problem can be solved. In this paper, we present the new backtracking-based algorithm det-k-decomp for computing hypertree decompositions of small width. Our benchmark evaluations have shown that det-k-decomp significantly outperforms opt-k-decomp, the only exact hypertree decomposition algorithm so far. Even compared to the best heuristic algorithm, we obtained competitive results as long as the hypergraphs are not too large.Comment: 19 pages, 6 figures, 3 table

    Optimal two-qubit gate for generation of random bipartite entanglement

    Get PDF
    We numerically study protocols consisting of repeated applications of two qubit gates used for generating random pure states. A necessary number of steps needed in order to generate states displaying bipartite entanglement typical of random states is obtained. For generic two qubit entangling gate the decay rate of purity is found to scale as n\sim n and therefore of order n2\sim n^2 steps are necessary to reach random bipartite entanglement. We also numerically identify the optimal two qubit gate for which the convergence is the fastest. Perhaps surprisingly, applying the same good two qubit gate in addition to a random single qubit rotations at each step leads to a faster generation of entanglement than applying a random two qubit transformation at each step.Comment: 9 pages, 9 PS figures; published versio

    Classical String in Curved Backgrounds

    Get PDF
    The Mathisson-Papapetrou method is originally used for derivation of the particle world line equation from the covariant conservation of its stress-energy tensor. We generalize this method to extended objects, such as a string. Without specifying the type of matter the string is made of, we obtain both the equations of motion and boundary conditions of the string. The world sheet equations turn out to be more general than the familiar minimal surface equations. In particular, they depend on the internal structure of the string. The relevant cases are classified by examining canonical forms of the effective 2-dimensional stress-energy tensor. The case of homogeneously distributed matter with the tension that equals its mass density is shown to define the familiar Nambu-Goto dynamics. The other three cases include physically relevant massive and massless strings, and unphysical tahyonic strings.Comment: 12 pages, REVTeX 4. Added a note and one referenc

    Topological interactions in systems of mutually interlinked polymer rings

    Full text link
    The topological interaction arising in interlinked polymeric rings such as DNA catenanes is considered. More specifically, the free energy for a pair of linked random walk rings is derived where the distance RR between two segments each of which is part of a different ring is kept constant. The topology conservation is imposed by the Gauss invariant. A previous approach (M.Otto, T.A. Vilgis, Phys.Rev.Lett. {\bf 80}, 881 (1998)) to the problem is refined in several ways. It is confirmed, that asymptotically, i.e. for large RRGR\gg R_G where RGR_G is average size of single random walk ring, the effective topological interaction (free energy) scales R4\propto R^4.Comment: 16 pages, 3 figur

    Anomalous diffusion and dynamical localization in a parabolic map

    Full text link
    We study numerically classical and quantum dynamics of a piecewise parabolic area preserving map on a cylinder which emerges from the bounce map of elongated triangular billiards. The classical map exhibits anomalous diffusion. Quantization of the same map results in a system with dynamical localization and pure point spectrum.Comment: 4 pages in RevTeX (4 ps-figures included

    Some properties of WKB series

    Full text link
    We investigate some properties of the WKB series for arbitrary analytic potentials and then specifically for potentials xNx^N (NN even), where more explicit formulae for the WKB terms are derived. Our main new results are: (i) We find the explicit functional form for the general WKB terms σk\sigma_k', where one has only to solve a general recursion relation for the rational coefficients. (ii) We give a systematic algorithm for a dramatic simplification of the integrated WKB terms σkdx\oint \sigma_k'dx that enter the energy eigenvalue equation. (iii) We derive almost explicit formulae for the WKB terms for the energy eigenvalues of the homogeneous power law potentials V(x)=xNV(x) = x^N, where NN is even. In particular, we obtain effective algorithms to compute and reduce the terms of these series.Comment: 18 pages, submitted to Journal of Physics A: Mathematical and Genera
    corecore