7 research outputs found

    Do metric fluctuations affect the Higgs dynamics during inflation?

    No full text
    We show that the dynamics of the Higgs field during inflation is not affected by metric fluctuations if the Higgs is an energetically subdominant light spectator. For Standard Model parameters we find that couplings between Higgs and metric fluctuations are suppressed by Script O(10−7). They are negligible compared to both pure Higgs terms in the effective potential and the unavoidable non-minimal Higgs coupling to background scalar curvature. The question of the electroweak vacuum instability during high energy scale inflation can therefore be studied consistently using the Jordan frame action in a Friedmann-Lemaître-Robertson-Walker metric, where the Higgs-curvature coupling enters as an effective mass contribution. Similar results apply for other light spectator scalar fields during inflation

    Quantum corrections to quartic inflation with a non-minimal coupling: metric vs. Palatini

    No full text
    We study models of quartic inflation where the inflaton field phgr is coupled non-minimally to gravity, ξ phgr2 R, and perform a study of quantum corrections in curved space-time at one-loop level. We specifically focus on comparing results between the metric and Palatini theories of gravity. Transformation from the Jordan to the Einstein frame gives different results for the two formulations and by using an effective field theory expansion we derive the appropriate β-functions and the renormalisation group improved effective potentials in curved space for both cases in the Einstein frame. In particular, we show that in both formalisms the Einstein frame depends on the order of perturbation theory but that the flatness of the potential is unaltered by quantum corrections

    DNA Repair Polymerases

    No full text
    corecore