2,328 research outputs found
Stripe Disordering Transition
We have recently begun Monte Carlo simulations of the dynamics of stripe
phases in the cuprates. A simple model of spinodal decomposition of the holes
allows us to incorporate Coulomb repulsion and coherency strains. We find
evidence for a possible stripe disordering transition, at a temperature below
the pseudogap onset. Experimental searches for such a transition can provide
constraints for models of stripe formation.Comment: 4 pages LaTex, 2 ps figures (U. of Miami Conference HTS99
SO(6)-Generalized Pseudogap Model of the Cuprates
The smooth evolution of the tunneling gap of Bi_2Sr_2CaCu_2O_8 with doping
from a pseudogap state in the underdoped cuprates to a superconducting state at
optimal and overdoping reflects an underlying SO(6) instability structure of
the (pi,0) saddle points. The pseudogap is probably not associated with
superconductivity, but is related to competing nesting instabilities, which are
responsible for the stripe phases. We earlier introduced a simple Ansatz of
this competition in terms of a pinned Balseiro-Falicov (pBF) model of competing
charge density wave and (s-wave) superconductivity. This model gives a good
description of the phase diagram and the tunneling and photoemission spectra.
Here, we briefly review these results, and discuss some recent developments:
experimental evidence for a non-superconducting component to the pseudogap; and
SO(6) generalizations of the pBF model, including flux phase and d-wave
superconductivity.Comment: 6 pages LaTex, 4 ps figures (U. of Miami Conference HTS99
Remnant Fermi Surfaces in Photoemission
Recent experiments have introduced a new concept for analyzing the
photoemission spectra of correlated electrons -- the remnant Fermi surface
(rFs), which can be measured even in systems which lack a conventional Fermi
surface. Here, we analyze the rFs in a number of interacting electron models,
and find that the results fall into two classes. For systems with pairing
instabilities, the rFs is an accurate replica of the true Fermi surface. In the
presence of nesting instabilities, the rFs is a map of the resulting
superlattice Brillouin zone. The results suggest that the gap in Ca_2CuO_2Cl_2
is of nesting origin.Comment: 4 pages LaTex, 3 ps figure
Evolution of Mid-gap States and Residual 3-Dimensionality in LaSrCuO
We have carried out extensive first principles doping-dependent computations
of angle-resolved photoemission (ARPES) intensities in LaSrCuO
(LSCO) over a wide range of binding energies. Intercell hopping and the
associated 3-dimensionality, which is usually neglected in discussing cuprate
physics, is shown to play a key role in shaping the ARPES spectra. Despite the
obvious importance of strong coupling effects (e.g. the presence of a lower
Hubbard band coexisting with mid-gap states in the doped insulator), we show
that a number of salient features of the experimental ARPES spectra are
captured to a surprisingly large extent when effects of -dispersion are
properly included in the analysis.Comment: 5 pages, 4 figure
Nodeless d-wave superconducting pairing due to residual antiferromagnetism in underdoped PrCeCuO
We have investigated the doping dependence of the penetration depth vs.
temperature in electron doped PrCeCuO using a model
which assumes the uniform coexistence of (mean-field) antiferromagnetism and
superconductivity. Despite the presence of a pairing gap in the
underlying spectrum, we find nodeless behavior of the low- penetration depth
in underdoped case, in accord with experimental results. As doping increases, a
linear-in- behavior of the penetration depth, characteristic of d-wave
pairing, emerges as the lower magnetic band crosses the Fermi level and creates
a nodal Fermi surface pocket.Comment: Accepted in PRL for publicatio
- β¦