416 research outputs found

    On a wildlife tracking and telemetry system : a wireless network approach

    Get PDF
    Includes abstract.Includes bibliographical references (p. 239-261).Motivated by the diversity of animals, a hybrid wildlife tracking system, EcoLocate, is proposed, with lightweight VHF-like tags and high performance GPS enabled tags, bound by a common wireless network design. Tags transfer information amongst one another in a multi-hop store-and-forward fashion, and can also monitor the presence of one another, enabling social behaviour studies to be conducted. Information can be gathered from any sensor variable of interest (such as temperature, water level, activity and so on) and forwarded through the network, thus leading to more effective game reserve monitoring. Six classes of tracking tags are presented, varying in weight and functionality, but derived from a common set of code, which facilitates modular tag design and deployment. The link between the tags means that tags can dynamically choose their class based on their remaining energy, prolonging lifetime in the network at the cost of a reduction in function. Lightweight, low functionality tags (that can be placed on small animals) use the capabilities of heavier, high functionality devices (placed on larger animals) to transfer their information. EcoLocate is a modular approach to animal tracking and sensing and it is shown how the same common technology can be used for diverse studies, from simple VHF-like activity research to full social and behavioural research using wireless networks to relay data to the end user. The network is not restricted to only tracking animals – environmental variables, people and vehicles can all be monitored, allowing for rich wildlife tracking studies

    Towards Monocular Vision based Obstacle Avoidance through Deep Reinforcement Learning

    Full text link
    Obstacle avoidance is a fundamental requirement for autonomous robots which operate in, and interact with, the real world. When perception is limited to monocular vision avoiding collision becomes significantly more challenging due to the lack of 3D information. Conventional path planners for obstacle avoidance require tuning a number of parameters and do not have the ability to directly benefit from large datasets and continuous use. In this paper, a dueling architecture based deep double-Q network (D3QN) is proposed for obstacle avoidance, using only monocular RGB vision. Based on the dueling and double-Q mechanisms, D3QN can efficiently learn how to avoid obstacles in a simulator even with very noisy depth information predicted from RGB image. Extensive experiments show that D3QN enables twofold acceleration on learning compared with a normal deep Q network and the models trained solely in virtual environments can be directly transferred to real robots, generalizing well to various new environments with previously unseen dynamic objects.Comment: Accepted by RSS 2017 workshop New Frontiers for Deep Learning in Robotic

    The effects of caffeine on delay discounting in humans

    Get PDF
    A behavioral form of impulsivity, delay discounting, has been used to examine the effects of drug consumption on individuals\u27 abilities to delay gratification. However, delay discounting has not been used to examine one of the most commonly used drugs in the world, caffeine. Nor has delay discounting been used to examine the effects of drug influence on impulsivity. This study examined the influence of 200 mg caffeine on delay discounting in a collegiate sample. 15 participants underwent two experimental sessions: a caffeine condition and a placebo condition. Although participants were more impulsive under caffeine than under placebo, this trend was non-significant. This study does however provide a good model for evaluating the influence of drug state on impulsivity

    Increasing the Efficiency of 6-DoF Visual Localization Using Multi-Modal Sensory Data

    Full text link
    Localization is a key requirement for mobile robot autonomy and human-robot interaction. Vision-based localization is accurate and flexible, however, it incurs a high computational burden which limits its application on many resource-constrained platforms. In this paper, we address the problem of performing real-time localization in large-scale 3D point cloud maps of ever-growing size. While most systems using multi-modal information reduce localization time by employing side-channel information in a coarse manner (eg. WiFi for a rough prior position estimate), we propose to inter-weave the map with rich sensory data. This multi-modal approach achieves two key goals simultaneously. First, it enables us to harness additional sensory data to localise against a map covering a vast area in real-time; and secondly, it also allows us to roughly localise devices which are not equipped with a camera. The key to our approach is a localization policy based on a sequential Monte Carlo estimator. The localiser uses this policy to attempt point-matching only in nodes where it is likely to succeed, significantly increasing the efficiency of the localization process. The proposed multi-modal localization system is evaluated extensively in a large museum building. The results show that our multi-modal approach not only increases the localization accuracy but significantly reduces computational time.Comment: Presented at IEEE-RAS International Conference on Humanoid Robots (Humanoids) 201

    Dense 3D Object Reconstruction from a Single Depth View

    Get PDF
    In this paper, we propose a novel approach, 3D-RecGAN++, which reconstructs the complete 3D structure of a given object from a single arbitrary depth view using generative adversarial networks. Unlike existing work which typically requires multiple views of the same object or class labels to recover the full 3D geometry, the proposed 3D-RecGAN++ only takes the voxel grid representation of a depth view of the object as input, and is able to generate the complete 3D occupancy grid with a high resolution of 256^3 by recovering the occluded/missing regions. The key idea is to combine the generative capabilities of autoencoders and the conditional Generative Adversarial Networks (GAN) framework, to infer accurate and fine-grained 3D structures of objects in high-dimensional voxel space. Extensive experiments on large synthetic datasets and real-world Kinect datasets show that the proposed 3D-RecGAN++ significantly outperforms the state of the art in single view 3D object reconstruction, and is able to reconstruct unseen types of objects.Comment: TPAMI 2018. Code and data are available at: https://github.com/Yang7879/3D-RecGAN-extended. This article extends from arXiv:1708.0796

    Learning with Training Wheels: Speeding up Training with a Simple Controller for Deep Reinforcement Learning

    Get PDF
    Deep Reinforcement Learning (DRL) has been applied successfully to many robotic applications. However, the large number of trials needed for training is a key issue. Most of existing techniques developed to improve training efficiency (e.g. imitation) target on general tasks rather than being tailored for robot applications, which have their specific context to benefit from. We propose a novel framework, Assisted Reinforcement Learning, where a classical controller (e.g. a PID controller) is used as an alternative, switchable policy to speed up training of DRL for local planning and navigation problems. The core idea is that the simple control law allows the robot to rapidly learn sensible primitives, like driving in a straight line, instead of random exploration. As the actor network becomes more advanced, it can then take over to perform more complex actions, like obstacle avoidance. Eventually, the simple controller can be discarded entirely. We show that not only does this technique train faster, it also is less sensitive to the structure of the DRL network and consistently outperforms a standard Deep Deterministic Policy Gradient network. We demonstrate the results in both simulation and real-world experiments.Comment: Published in ICRA2018. The code is now available at https://github.com/xie9187/AsDDP

    Identifying Sources and Sinks in the Presence of Multiple Agents with Gaussian Process Vector Calculus

    Full text link
    In systems of multiple agents, identifying the cause of observed agent dynamics is challenging. Often, these agents operate in diverse, non-stationary environments, where models rely on hand-crafted environment-specific features to infer influential regions in the system's surroundings. To overcome the limitations of these inflexible models, we present GP-LAPLACE, a technique for locating sources and sinks from trajectories in time-varying fields. Using Gaussian processes, we jointly infer a spatio-temporal vector field, as well as canonical vector calculus operations on that field. Notably, we do this from only agent trajectories without requiring knowledge of the environment, and also obtain a metric for denoting the significance of inferred causal features in the environment by exploiting our probabilistic method. To evaluate our approach, we apply it to both synthetic and real-world GPS data, demonstrating the applicability of our technique in the presence of multiple agents, as well as its superiority over existing methods.Comment: KDD '18 Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Pages 1254-1262, 9 pages, 5 figures, conference submission, University of Oxford. arXiv admin note: text overlap with arXiv:1709.0235
    corecore