416 research outputs found
On a wildlife tracking and telemetry system : a wireless network approach
Includes abstract.Includes bibliographical references (p. 239-261).Motivated by the diversity of animals, a hybrid wildlife tracking system, EcoLocate, is proposed, with lightweight VHF-like tags and high performance GPS enabled tags, bound by a common wireless network design. Tags transfer information amongst one another in a multi-hop store-and-forward fashion, and can also monitor the presence of one another, enabling social behaviour studies to be conducted. Information can be gathered from any sensor variable of interest (such as temperature, water level, activity and so on) and forwarded through the network, thus leading to more effective game reserve monitoring. Six classes of tracking tags are presented, varying in weight and functionality, but derived from a common set of code, which facilitates modular tag design and deployment. The link between the tags means that tags can dynamically choose their class based on their remaining energy, prolonging lifetime in the network at the cost of a reduction in function. Lightweight, low functionality tags (that can be placed on small animals) use the capabilities of heavier, high functionality devices (placed on larger animals) to transfer their information. EcoLocate is a modular approach to animal tracking and sensing and it is shown how the same common technology can be used for diverse studies, from simple VHF-like activity research to full social and behavioural research using wireless networks to relay data to the end user. The network is not restricted to only tracking animals – environmental variables, people and vehicles can all be monitored, allowing for rich wildlife tracking studies
Towards Monocular Vision based Obstacle Avoidance through Deep Reinforcement Learning
Obstacle avoidance is a fundamental requirement for autonomous robots which
operate in, and interact with, the real world. When perception is limited to
monocular vision avoiding collision becomes significantly more challenging due
to the lack of 3D information. Conventional path planners for obstacle
avoidance require tuning a number of parameters and do not have the ability to
directly benefit from large datasets and continuous use. In this paper, a
dueling architecture based deep double-Q network (D3QN) is proposed for
obstacle avoidance, using only monocular RGB vision. Based on the dueling and
double-Q mechanisms, D3QN can efficiently learn how to avoid obstacles in a
simulator even with very noisy depth information predicted from RGB image.
Extensive experiments show that D3QN enables twofold acceleration on learning
compared with a normal deep Q network and the models trained solely in virtual
environments can be directly transferred to real robots, generalizing well to
various new environments with previously unseen dynamic objects.Comment: Accepted by RSS 2017 workshop New Frontiers for Deep Learning in
Robotic
The effects of caffeine on delay discounting in humans
A behavioral form of impulsivity, delay discounting, has been used to examine the effects of drug consumption on individuals\u27 abilities to delay gratification. However, delay discounting has not been used to examine one of the most commonly used drugs in the world, caffeine. Nor has delay discounting been used to examine the effects of drug influence on impulsivity. This study examined the influence of 200 mg caffeine on delay discounting in a collegiate sample. 15 participants underwent two experimental sessions: a caffeine condition and a placebo condition. Although participants were more impulsive under caffeine than under placebo, this trend was non-significant. This study does however provide a good model for evaluating the influence of drug state on impulsivity
Increasing the Efficiency of 6-DoF Visual Localization Using Multi-Modal Sensory Data
Localization is a key requirement for mobile robot autonomy and human-robot
interaction. Vision-based localization is accurate and flexible, however, it
incurs a high computational burden which limits its application on many
resource-constrained platforms. In this paper, we address the problem of
performing real-time localization in large-scale 3D point cloud maps of
ever-growing size. While most systems using multi-modal information reduce
localization time by employing side-channel information in a coarse manner (eg.
WiFi for a rough prior position estimate), we propose to inter-weave the map
with rich sensory data. This multi-modal approach achieves two key goals
simultaneously. First, it enables us to harness additional sensory data to
localise against a map covering a vast area in real-time; and secondly, it also
allows us to roughly localise devices which are not equipped with a camera. The
key to our approach is a localization policy based on a sequential Monte Carlo
estimator. The localiser uses this policy to attempt point-matching only in
nodes where it is likely to succeed, significantly increasing the efficiency of
the localization process. The proposed multi-modal localization system is
evaluated extensively in a large museum building. The results show that our
multi-modal approach not only increases the localization accuracy but
significantly reduces computational time.Comment: Presented at IEEE-RAS International Conference on Humanoid Robots
(Humanoids) 201
Dense 3D Object Reconstruction from a Single Depth View
In this paper, we propose a novel approach, 3D-RecGAN++, which reconstructs
the complete 3D structure of a given object from a single arbitrary depth view
using generative adversarial networks. Unlike existing work which typically
requires multiple views of the same object or class labels to recover the full
3D geometry, the proposed 3D-RecGAN++ only takes the voxel grid representation
of a depth view of the object as input, and is able to generate the complete 3D
occupancy grid with a high resolution of 256^3 by recovering the
occluded/missing regions. The key idea is to combine the generative
capabilities of autoencoders and the conditional Generative Adversarial
Networks (GAN) framework, to infer accurate and fine-grained 3D structures of
objects in high-dimensional voxel space. Extensive experiments on large
synthetic datasets and real-world Kinect datasets show that the proposed
3D-RecGAN++ significantly outperforms the state of the art in single view 3D
object reconstruction, and is able to reconstruct unseen types of objects.Comment: TPAMI 2018. Code and data are available at:
https://github.com/Yang7879/3D-RecGAN-extended. This article extends from
arXiv:1708.0796
Learning with Training Wheels: Speeding up Training with a Simple Controller for Deep Reinforcement Learning
Deep Reinforcement Learning (DRL) has been applied successfully to many
robotic applications. However, the large number of trials needed for training
is a key issue. Most of existing techniques developed to improve training
efficiency (e.g. imitation) target on general tasks rather than being tailored
for robot applications, which have their specific context to benefit from. We
propose a novel framework, Assisted Reinforcement Learning, where a classical
controller (e.g. a PID controller) is used as an alternative, switchable policy
to speed up training of DRL for local planning and navigation problems. The
core idea is that the simple control law allows the robot to rapidly learn
sensible primitives, like driving in a straight line, instead of random
exploration. As the actor network becomes more advanced, it can then take over
to perform more complex actions, like obstacle avoidance. Eventually, the
simple controller can be discarded entirely. We show that not only does this
technique train faster, it also is less sensitive to the structure of the DRL
network and consistently outperforms a standard Deep Deterministic Policy
Gradient network. We demonstrate the results in both simulation and real-world
experiments.Comment: Published in ICRA2018. The code is now available at
https://github.com/xie9187/AsDDP
Identifying Sources and Sinks in the Presence of Multiple Agents with Gaussian Process Vector Calculus
In systems of multiple agents, identifying the cause of observed agent
dynamics is challenging. Often, these agents operate in diverse, non-stationary
environments, where models rely on hand-crafted environment-specific features
to infer influential regions in the system's surroundings. To overcome the
limitations of these inflexible models, we present GP-LAPLACE, a technique for
locating sources and sinks from trajectories in time-varying fields. Using
Gaussian processes, we jointly infer a spatio-temporal vector field, as well as
canonical vector calculus operations on that field. Notably, we do this from
only agent trajectories without requiring knowledge of the environment, and
also obtain a metric for denoting the significance of inferred causal features
in the environment by exploiting our probabilistic method. To evaluate our
approach, we apply it to both synthetic and real-world GPS data, demonstrating
the applicability of our technique in the presence of multiple agents, as well
as its superiority over existing methods.Comment: KDD '18 Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, Pages 1254-1262, 9 pages, 5 figures,
conference submission, University of Oxford. arXiv admin note: text overlap
with arXiv:1709.0235
- …