5 research outputs found

    NovelOPA1missense mutation in a family with optic atrophy and severe widespread neurological disorder

    No full text
    Purpose:  To identify the underlying molecular genetic cause in a Czech family with optic atrophy, deafness, ptosis, ophthalmoplegia, polyneuropathy and ataxia transmitted as an autosomal dominant trait. Methods:  Ophthalmological and neurological examination followed by molecular genetic analyses. Results:  Seven family members were clinically affected. There was a variable but progressive visual, hearing and neurological disability across the family as a whole. The majority of subjects presented with impairment of visual function and a variable degree of ptosis and/or ophthalmoplegia from the first to the third decade of life. Deafness, neuropathy and ataxia appeared later, in the third and fourth decade. Migraine, tachycardia, intention tremor, nystagmus and cervical dystonia were observed in isolated individuals. A significant overall feature was the high level of neurological disability leading to 3 of 4 members being unable to walk or stand unaided before the age of 60 years. A novel missense mutation c.1345A>C (p.Thr449Pro) in OPA1 segregating with the disease phenotype over three generations was detected. In silico analysis supported pathogenicity of the identified sequence variant. Conclusion:  Our work expands the spectrum of mutation in OPA1, which may lead to severe multisystem neurological disorder. The molecular genetic cause of dominant optic atrophy in the Czech population is reported for the first time. We propose that regular cardiac follow-up in patients diagnosed with dominant optic atrophy and widespread neurological disease should be considered

    Should Patients with Kearns-Sayre Syndrome and Corneal Endothelial Failure Be Genotyped for a TCF4 Trinucleotide Repeat, Commonly Associated with Fuchs Endothelial Corneal Dystrophy?

    No full text
    The aim of this study was to describe the ocular phenotype in a case with Kearns-Sayre syndrome (KSS) spectrum and to determine if corneal endothelial cell dysfunction could be attributed to other known distinct genetic causes. Herein, genomic DNA was extracted from blood and exome sequencing was performed. Non-coding gene regions implicated in corneal endothelial dystrophies were screened by Sanger sequencing. In addition, a repeat expansion situated within an intron of TCF4 (termed CTG18.1) was genotyped using the short tandem repeat assay. The diagnosis of KSS spectrum was based on the presence of ptosis, chronic progressive external ophthalmoplegia, pigmentary retinopathy, hearing loss, and muscle weakness, which were further supported by the detection of ~6.5 kb mtDNA deletion. At the age of 33 years, the proband’s best corrected visual acuity was reduced to 0.04 in the right eye and 0.2 in the left eye. Rare ocular findings included marked corneal oedema with central corneal thickness of 824 and 844 µm in the right and left eye, respectively. No pathogenic variants in the genes, which are associated with corneal endothelial dystrophies, were identified. Furthermore, the CTG18.1 genotype was 12/33, which exceeds a previously determined critical threshold for toxic RNA foci appearance in corneal endothelial cells

    Sensitivity to Cisplatin in Head and Neck Cancer Cells Is Significantly Affected by Patient-Derived Cancer-Associated Fibroblasts

    No full text
    Cancer-associated fibroblasts (CAFs) are one of the most abundant and critical components of the tumor stroma. CAFs can impact many important steps of cancerogenesis and may also influence treatment resistance. Some of these effects need the direct contact of CAFs and cancer cells, while some involve paracrine signals. In this study, we investigated the ability of head and neck squamous cell carcinomas (HNSCC) patient-derived CAFs to promote or inhibit the colony-forming ability of HNSCC cells. The effect of cisplatin on this promoting or inhibiting influence was also studied. The subsequent analysis focused on changes in the expression of genes associated with cancer progression. We found that cisplatin response in model HNSCC cancer cells was modified by coculture with CAFs, was CAF-specific, and different patient-derived CAFs had a different “sensitizing ratio”. Increased expression of VEGFA, PGE2S, COX2, EGFR, and NANOG in cancer cells was characteristic for the increase of resistance. On the other hand, CCL2 expression was associated with sensitizing effect. Significantly higher amounts of cisplatin were found in CAFs derived from patients who subsequently experienced a recurrence. In conclusion, our results showed that CAFs could promote and/or inhibit colony-forming capability and cisplatin resistance in HNSCC cells via paracrine effects and subsequent changes in gene expression of cancer-associated genes in cancer cells
    corecore