14 research outputs found

    Liposuction Treatment of Lymphedema

    No full text
    In the Western world, lymphedema most commonly occurs following treatment of cancer. Limb reductions have been reported utilizing various conservative therapies including manual lymph and pressure therapy, as well as by microsurgical reconstruction involving lymphovenous shunts and transplantation of lymph vessels or nodes. Failure of these conservative and surgical treatments to provide complete reduction in patients with long-standing pronounced lymphedema is due to the persistence of excess newly formed subcutaneous adipose tissue in response to slow or absent lymph flow, which is not removed in patients with chronic non-pitting lymphedema. Traditional surgical regimes utilizing bridging procedures, total excision with skin grafting, or reduction plasty seldom achieved acceptable cosmetic and functional results. Liposuction removes the hypertrophied adipose tissue and is a prerequisite to achieve complete reduction, and this reduction is maintained long-term through constant (24 h) use of compression garments postoperatively. This article describes the techniques and evidence basis for the use of liposuction for treatment of lymphedema

    Harnessing the synergy of perfusable muscle flap matrix and adipose-derived stem cells for prevascularization and macrophage polarization to reconstruct volumetric muscle loss

    No full text
    Muscle flaps must have a strong vascular network to support a large tissue volume and ensure successful engraftment. We developed porcine stomach musculofascial flap matrix (PDSF) comprising extracellular matrix (ECM) and intact vasculature. PDSF had a dominant vascular pedicle, microcirculatory vessels, a nerve network, well-retained 3-dimensional (3D) nanofibrous ECM structures, and no allo- or xenoantigenicity. In-depth proteomic analysis demonstrated that PDSF was composed of core matrisome proteins (e.g., collagens, glycoproteins, proteoglycans, and ECM regulators) that, as shown by Gene Ontology term enrichment analysis, are functionally related to musculofascial biological processes. Moreover, PDSF−human adipose-derived stem cell (hASC) synergy not only induced monocytes towards IL-10−producing M2 macrophage polarization through the enhancement of hASCs' paracrine effect but also promoted the proliferation and interconnection of both human skeletal muscle myoblasts (HSMMs) and human umbilical vein endothelial cells (HUVECs) in static triculture conditions. Furthermore, PDSF was successfully prevascularized through a dynamic perfusion coculture of hASCs and HUVECs, which integrated with PDSF and induced the maturation of vascular networks in vitro. In a xenotransplantation model, PDSF demonstrated myoconductive and immunomodulatory properties associated with the predominance of M2 macrophages and regulatory T cells. In a volumetric muscle loss (VML) model, prevascularized PDSF augmented neovascularization and constructive remodeling, which was characterized by the predominant infiltration of M2 macrophages and significant musculofascial tissue formation. These results indicate that hASCs' integration with PDSF enhances the cells’ dual function in immunomodulation and angiogenesis. Owing in part to this PDSF-hASC synergy, our platform shows promise for vascularized muscle flap engineering for VML reconstruction
    corecore