34,989 research outputs found

    Protostellar Feedback in Turbulent Fragmentation: Consequences for Stellar Clustering and Multiplicity

    Get PDF
    Stars are strongly clustered on both large (~pc) and small (~binary) scales, but there are few analytic or even semi-analytic theories for the correlation function and multiplicity of stars. In this paper we present such a theory, based on our recently-developed semi-analytic framework called MISFIT, which models gravito-turbulent fragmentation, including the suppression of fragmentation by protostellar radiation feedback. We compare the results including feedback to a control model in which it is omitted. We show that both classes of models robustly reproduce the stellar correlation function at >0.01 pc scales, which is well approximated by a power-law that follows generally from scale-free physics (turbulence plus gravity) on large scales. On smaller scales protostellar disk fragmentation becomes dominant over common core fragmentation, leading to a steepening of the correlation function. Multiplicity is more sensitive to feedback: we found that a model with the protostellar heating reproduces the observed multiplicity fractions and mass ratio distributions for both Solar and sub-Solar mass stars (in particular the brown dwarf desert), while a model without feedback fails to do so. The model with feedback also produces an at-formation period distribution consistent with the one inferred from observations. However, it is unable to produce short-range binaries below the length scale of protostellar disks. We suggest that such close binaries are produced primarily by disk fragmentation and further decrease their separation through orbital decay.Comment: 17 pages, 15 figures, submitted to MNRA

    Radiation Pressure in Massive Star Formation

    Full text link
    Stars with masses of >~ 20 solar masses have short Kelvin times that enable them to reach the main sequence while still accreting from their natal clouds. The resulting nuclear burning produces a huge luminosity and a correspondingly large radiation pressure force on dust grains in the accreting gas. This effect may limit the upper mass of stars that can form by accretion. Indeed, simulations and analytic calculations to date have been unable to resolve the mystery of how stars of 50 solar masses and up form. We present two new ideas to solve the radiation pressure problem. First, we use three-dimensional radiation hydrodynamic adaptive mesh refinement simulations to study the collapse of massive cores. We find that in three dimensions a configuration in which radiation holds up an infalling envelope is Rayleigh-Taylor unstable, leading radiation driven bubbles to collapse and accretion to continue. We also present Monte Carlo radiative transfer calculations showing that the cavities created by protostellar winds provides a valve that allow radiation to escape the accreting envelope, further reducing the ability of radiation pressure to inhibit accretion.Comment: To be appear in "IAU 227: Massive Star Birth: A Crossroads of Astrophysics"; 6 pages, 1 figur

    \u3ci\u3eAnthidium Oblongatum\u3c/i\u3e (Apoidea: Megachilidae) Confirmed as a Michigan Resident, with Notes on Other Michigan \u3ci\u3eAnthidium\u3c/i\u3e Species

    Get PDF
    The Palearctic wool-carder bee, Anthidium oblongatum (Illiger) is newly documented in Michigan, with vouchers from Kent, Washtenaw, and Wayne Counties. Additional Michigan records are provided for Anthidium manicatum (L.) and the native Anthidium psoraleae Robertson
    • …
    corecore