456 research outputs found

    Capillary Adhesion at the Nanometer Scale

    Full text link
    Molecular dynamics simulations are used to study the capillary adhesion from a nonvolatile liquid meniscus between a spherical tip and a flat substrate. The atomic structure of the tip, the tip radius, the contact angles of the liquid on the two surfaces, and the volume of the liquid bridge are varied. The capillary force between the tip and substrate is calculated as a function of their separation h. The force agrees with continuum predictions for h down to ~ 5 to 10nm. At smaller h, the force tends to be less attractive than predicted and has strong oscillations. This oscillatory component of the capillary force is completely missed in the continuum theory, which only includes contributions from the surface tension around the circumference of the meniscus and the pressure difference over the cross section of the meniscus. The oscillation is found to be due to molecular layering of the liquid confined in the narrow gap between the tip and substrate. This effect is most pronounced for large tip radii and/or smooth surfaces. The other two components considered by the continuum theory are also identified. The surface tension term, as well as the meniscus shape, is accurately described by the continuum prediction for h down to ~ 1nm, but the capillary pressure term is always more positive than the corresponding continuum result. This shift in the capillary pressure reduces the average adhesion by a factor as large as 2 from its continuum value and is found to be due to an anisotropy in the pressure tensor. The cross-sectional component is consistent with the capillary pressure predicted by the continuum theory (i.e., the Young-Laplace equation), but the normal pressure that determines the capillary force is always more positive than the continuum counterpart.Comment: 16 pages, 14 figure

    Defining Contact at the Atomic Scale

    Full text link
    Molecular dynamics simulations are used to study different definitions of contact at the atomic scale. The roles of temperature, adhesive interactions and atomic structure are studied for simple geometries. An elastic, crystalline substrate contacts a rigid, atomically flat surface or a spherical tip. The rigid surface is formed from a commensurate or incommensurate crystal or an amorphous solid. Spherical tips are made by bending crystalline planes or removing material outside a sphere. In continuum theory the fraction of atomically flat surfaces that is in contact rises sharply from zero to unity when a load is applied. This simple behavior is surprisingly difficult to reproduce with atomic scale definitions of contact. Due to thermal fluctuations, the number of atoms making contact at any instant rises linearly with load over a wide range of loads. Pressures comparable to the ideal hardness are needed to achieve full contact at typical temperatures. A simple harmonic mean-field theory provides a quantitative description of this behavior and explains why the instantaneous forces on atoms have a universal exponential form. Contact areas are also obtained by counting the number of atoms with a time-averaged repulsive force. For adhesive interactions, the resulting area is nearly independent of temperature and averaging interval, but usually rises from zero to unity over a range of pressures that is comparable to the ideal hardness. The only exception is the case of two identical commensurate surfaces. For nonadhesive surfaces, the mean pressure is repulsive if there is any contact during the averaging interval Δt\Delta t. The associated area is very sensitive to Δt\Delta t and grows monotonically. Similar complications are encountered in defining contact areas for spherical tips.Comment: 18 pages, 11 figure

    Stretching of Proteins in the Entropic Limit

    Full text link
    Mechanical stretching of six proteins is studied through molecular dynamics simulations. The model is Go-like, with Lennard-Jones interactions at native contacts. Low temperature unfolding scenarios are remarkably complex and sensitive to small structural changes. Thermal fluctuations reduce the peak forces and the number of metastable states during unfolding. The unfolding pathways also simplify as temperature rises. In the entropic limit, all proteins show a monotonic decrease of the extension where bonds rupture with their separation along the backbone (contact order).Comment: RevTex, 5 pages, 5 figures, to appear in Phys. Rev.
    corecore