1,336 research outputs found
The Temporal Doppler Effect: When The Future Feels Closer Than The Past
People routinely remember events that have passed and imagine those that are yet to come. The past and the future are sometimes psychologically close ( just around the corner ) and other times psychologically distant ( ages away ). Four studies demonstrate a systematic asymmetry whereby future events are psychologically closer than past events of equivalent objective distance. When considering specific times (e.g., 1 year) or events (e.g., Valentine\u27s Day), people consistently reported that the future was closer than the past. We suggest that this asymmetry arises because the subjective experience of movement through time (whereby future events approach and past events recede) is analogous to the physical experience of movement through space. Consistent with this hypothesis, experimentally reversing the metaphorical arrow of time (by having participants move backward through virtual space) completely eliminated the past-future asymmetry. We discuss how reducing psychological distance to the future may function to prepare people for upcoming action
Efficient creation of molecules from a cesium Bose-Einstein condensate
We report a new scheme to create weakly bound Cs molecules from an atomic
Bose-Einstein condensate. The method is based on switching the magnetic field
to a narrow Feshbach resonance and yields a high atom-molecule conversion
efficiency of more than 30%, a factor of three higher than obtained with
conventional magnetic-field ramps. The Cs molecules are created in a single
-wave rotational quantum state. The observed dependence of the conversion
efficiency on the magnetic field and atom density shows scattering processes
beyond two-body coupling to occur in the vicinity of the Feshbach resonance.Comment: 7 pages, 4 figures, submitted to Europhysics Letter
Observation of Feshbach-like resonances in collisions between ultracold molecules
We observe magnetically tuned collision resonances for ultracold Cs2
molecules stored in a CO2-laser trap. By magnetically levitating the molecules
against gravity, we precisely measure their magnetic moment. We find an avoided
level crossing which allows us to transfer the molecules into another state. In
the new state, two Feshbach-like collision resonances show up as strong
inelastic loss features. We interpret these resonances as being induced by Cs4
bound states near the molecular scattering continuum. The tunability of the
interactions between molecules opens up novel applications such as controlled
chemical reactions and synthesis of ultracold complex molecules
Energy-efficient, On-demand Reprogramming of Large-scale Sensor Networks
As sensor networks operate over long periods of deployment in difficult to reach places, their requirements may change or new code may need to be uploaded to them. The current state of the art protocols (Deluge and MNP) for network reprogramming perform the code dissemination in a multi-hop manner using a three way handshake whereby meta-data is exchanged prior to code exchange to suppress redundant transmissions. The code image is also pipelined through the network at the granularity of pages. In this paper we propose a protocol called Freshet for optimizing the energy for code upload and speeding up the dissemination if multiple sources of code are available. The energy optimization is achieved by equipping each node with limited non-local topology information, which it uses to determine the time when it can go to sleep since code is not being distributed in its vicinity. The protocol to handle multiple sources provides a loose coupling of nodes to a source and disseminates code in waves each originating at a source, with mechanism to handle collisions when the waves meet. The protocol’s performance with respect to reliability, delay, and energy consumed, is demonstrated through analysis, simulation, and implementation on the Berkeley mote platform
Electrical characteristics of nearly relaxed InAs/GaP heterojunctions
The electrical properties of lattice mismatched InAs/GaP heterojunctions are examined. In spite of a high dislocation density at the heterointerface, the current versus voltage characteristics show nearly ideal behavior with low reverse leakage currents and high breakdown voltages. The forward currentvaried exponentially with bias displaying ideal factors of 1.10 or less. Band offsets estimated from current–voltage and capacitance–voltage analysis are consistent with previous estimates based on differences in Schottky barrier heights
Experimental Evidence for Efimov Quantum States
Three interacting particles form a system which is well known for its complex
physical behavior. A landmark theoretical result in few-body quantum physics is
Efimov's prediction of a universal set of weakly bound trimer states appearing
for three identical bosons with a resonant two-body interaction. Surprisingly,
these states even exist in the absence of a corresponding two-body bound state
and their precise nature is largely independent of the particular type of the
two-body interaction potential. Efimov's scenario has attracted great interest
in many areas of physics; an experimental test however has not been achieved.
We report the observation of an Efimov resonance in an ultracold thermal gas of
cesium atoms. The resonance occurs in the range of large negative two-body
scattering lengths and arises from the coupling of three free atoms to an
Efimov trimer. We observe its signature as a giant three-body recombination
loss when the strength of the two-body interaction is varied near a Feshbach
resonance. This resonance develops into a continuum resonance at non-zero
collision energies, and we observe a shift of the resonance position as a
function of temperature. We also report on a minimum in the recombination loss
for positive scattering lengths, indicating destructive interference of decay
pathways. Our results confirm central theoretical predictions of Efimov physics
and represent a starting point from which to explore the universal properties
of resonantly interacting few-body systems.Comment: 8 pages, 4 figures, Proceedings of ICAP-2006 (Innsbruck
Optimized production of a cesium Bose-Einstein condensate
We report on the optimized production of a Bose-Einstein condensate of cesium
atoms using an optical trapping approach. Based on an improved trap loading and
evaporation scheme we obtain more than atoms in the condensed phase. To
test the tunability of the interaction in the condensate we study the expansion
of the condensate as a function of scattering length. We further excite strong
oscillations of the trapped condensate by rapidly varying the interaction
strength.Comment: 9 pages, 7 figures, submitted to Appl. Phys.
`St\"uckelberg interferometry' with ultracold molecules
We report on the realization of a time-domain `St\"uckelberg interferometer',
which is based on the internal state structure of ultracold Feshbach molecules.
Two subsequent passages through a weak avoided crossing between two different
orbital angular momentum states in combination with a variable hold time lead
to high-contrast population oscillations. This allows for a precise
determination of the energy difference between the two molecular states. We
demonstrate a high degree of control over the interferometer dynamics. The
interferometric scheme provides new possibilities for precision measurements
with ultracold molecules.Comment: 4 pages, 5 figure
Spectroscopy of Ultracold, Trapped Cesium Feshbach Molecules
We explore the rich internal structure of Cs_2 Feshbach molecules. Pure
ultracold molecular samples are prepared in a CO_2-laser trap, and a multitude
of weakly bound states is populated by elaborate magnetic-field ramping
techniques. Our methods use different Feshbach resonances as input ports and
various internal level crossings for controlled state transfer. We populate
higher partial-wave states of up to eight units of rotational angular momentum
(l-wave states). We investigate the molecular structure by measurements of the
magnetic moments for various states. Avoided level crossings between different
molecular states are characterized through the changes in magnetic moment and
by a Landau-Zener tunneling method. Based on microwave spectroscopy, we present
a precise measurement of the magnetic-field dependent binding energy of the
weakly bound s-wave state that is responsible for the large background
scattering length of Cs. This state is of particular interest because of its
quantum-halo character.Comment: 15 pages, 12 figures, 4 table
Efficient organisation of the contralateral hemisphere connectome is associated with improvement in intelligence quotient after paediatric epilepsy surgery
ObjectiveAims of epilepsy surgery in childhood include optimising seizure control and facilitating cognitive development. Predicting which children will improve cognitively is challenging. We investigated the association of the pre-operative structural connectome of the contralateral non-operated hemisphere with improvement in intelligence quotient (IQ) post-operatively.MethodsConsecutive children who had undergone unilateral resective procedures for epilepsy at a single centre were retrospectively identified. We included those with pre-operative volume T1-weighted non-contrast brain magnetic resonance imaging (MRI), no visible contralateral MRI abnormalities, and both pre-operative and two years post-operative IQ assessment. The MRI of the hemisphere contralateral to the side of resection was anatomically parcellated into 34 cortical regions and the covariance of cortical thickness between regions was used to create binary and weighted group connectomes.ResultsEleven patients with a post-operative IQ increase of at least 10 points at two years were compared with twenty-four patients with no change in IQ score. Children who gained at least 10 IQ points post-operatively had a more efficiently structured contralateral hemisphere connectome with higher global efficiency (0.74) compared to those whose IQ did not change at two years (0.58, p=0.014). This was consistent across thresholds and both binary and weighted networks. There were no statistically significant group differences in age, sex, age at onset of epilepsy, pre-operative IQ, mean cortical thickness, side or site of procedure, two year post-operative Engel scores or use of anti-seizure medications between the two groups. ConclusionsSurgical procedures to reduce or stop seizures may allow children with an efficiently structured contralateral hemisphere to achieve their cognitive potential. <br/
- …