4 research outputs found

    Baseline Neurocognitive Performance and Symptoms in Those With Attention Deficit Hyperactivity Disorders and History of Concussion With Previous Loss of Consciousness

    Get PDF
    Previous consensus statements on sports concussion have highlighted the importance of Attention Deficit Hyperactivity Disorder (ADHD) and loss of consciousness (LOC) as risk factors related to concussion management. The present study investigated how self-reported history of either ADHD diagnosis or history of previous concussion resulting in LOC influence baseline neurocognitive performance and self-reported symptoms. This analysis was performed retrospectively on data collected primarily from student-athletes, both Division 1 and club sports athletes. The dataset (n = 1460) is comprised of college students (age = 19.1 ± 1.4 years). Significant differences were found for composite scores on the ImPACT for both history of concussion (p = 0.016) and ADHD (p = 0.014). For concussion history, those with a previous concussion, non-LOC, performed better on the visual motor speed (p = 0.004). Those with diagnosis of ADHD performed worse on verbal memory (p = 0.001) and visual motor speed (p = 0.033). For total symptoms, concussion history (p < 0.001) and ADHD (p = 0.001) had an influence on total symptoms. Those with ADHD reported more symptoms for concussion history; those with previous LOC concussion reported more symptoms than those with non-LOC concussion (p = 0.003) and no history (p < 0.001). These results highlight the importance of baseline measures of neurocognitive function and symptoms in concussion management in order to account for pre-existing conditions such as ADHD and LOC from previous concussion that could influence these measures

    The bidirectional gut-brain-microbiota axis as a potential nexus between traumatic brain injury, inflammation, and disease

    No full text
    As head injuries and their sequelae have become an increasingly salient matter of public health, experts in the field have made great progress elucidating the biological processes occurring within the brain at the moment of injury and throughout the recovery thereafter. Given the extraordinary rate at which our collective knowledge of neurotrauma has grown, new insights may be revealed by examining the existing literature across disciplines with a new perspective. This article will aim to expand the scope of this rapidly evolving field of research beyond the confines of the central nervous system (CNS). Specifically, we will examine the extent to which the bidirectional influence of the gut-brain axis modulates the complex biological processes occurring at the time of traumatic brain injury (TBI) and over the days, months, and years that follow. In addition to local enteric signals originating in the gut, it is well accepted that gastrointestinal (GI) physiology is highly regulated by innervation from the CNS. Conversely, emerging data suggests that the function and health of the CNS is modulated by the interaction between 1) neurotransmitters, immune signaling, hormones, and neuropeptides produced in the gut, 2) the composition of the gut microbiota, and 3) integrity of the intestinal wall serving as a barrier to the external environment. Specific to TBI, existing pre-clinical data indicates that head injuries can cause structural and functional damage to the GI tract, but research directly investigating the neuronal consequences of this intestinal damage is lacking. Despite this void, the proposed mechanisms emanating from a damaged gut are closely implicated in the inflammatory processes known to promote neuropathology in the brain following TBI, which suggests the gut-brain axis may be a therapeutic target to reduce the risk of Chronic Traumatic Encephalopathy and other neurodegenerative diseases following TBI. To better appreciate how various peripheral influences are implicated in the health of the CNS following TBI, this paper will also review the secondary biological injury mechanisms and the dynamic pathophysiological response to neurotrauma. Together, this review article will attempt to connect the dots to reveal novel insights into the bidirectional influence of the gut-brain axis and propose a conceptual model relevant to the recovery from TBI and subsequent risk for future neurological conditions.12 month embargo; Available online 17 May 2017.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore