14 research outputs found

    Differences in Lower Extremity Kinematics Between High School Cross-Country and Young Adult Recreational Runners

    Get PDF
    # Background While previous research has assessed running kinematics for age-related differences that could increase the risk of a running-related injury, none of these studies have included high school aged runners or assessed running kinematics using 2-dimensional video analysis. # Purpose The purpose of this study was to compare sagittal plane kinematics during treadmill running in high school cross-country and young adult recreational runners using 2-dimensional motion analysis techniques. # Methods Twenty-five high school cross-country runners (13 women, 12 men) and 25 young adult recreational runners (12 women, 13 men) consented to participate in this study. Reflective markers were placed on each lower extremity over multiple anatomical landmarks. After a five-minute acclimation period in which the participants ran on a treadmill at their preferred running speed, video data were recorded at 240 frames per second for all participants while they continued to run on the treadmill. # Results There were no significant differences between left and right extremities. The young adult recreational runners exhibited significantly greater vertical excursion of the center of mass (*t* = 4.64, p = .0001) compared to the high school runners. There was no significant difference between the two age groups regarding the six other sagittal plane variables. # Conclusions The young adult recreational runners demonstrated an increased center-of-mass vertical excursion in comparison to high school cross-country runners. In addition, the results obtained in this study for kinematic variables using 2-dimensional motion analysis were similar to previously reported studies using 3-dimensional motion analysis, demonstrating that 2-dimensional motion analysis could be used for analyzing sagittal plane running kinematics in clinical settings. # Level of Evidence 4, Controlled laboratory stud

    Medial Tibial Stress Syndrome in Active Individuals: A Systematic Review and Meta-analysis of Risk Factors

    No full text
    Context: Medial tibial stress syndrome (MTSS) is a common condition in active individuals and presents as diffuse pain along the posteromedial border of the tibia. Objective: To use cross-sectional, case-control, and cohort studies to identify significant MTSS risk factors. Data Sources: Bibliographic databases (PubMed, Scopus, CINAHL, SPORTDiscus, EMBASE, EBM Reviews, PEDRo), grey literature, electronic search of full text of journals, manual review of reference lists, and automatically executed PubMed MTSS searches were utilized. All searches were conducted between 2011 and 2015. Study Selection: Inclusion criteria were determined a priori and included original research with participants’ pain diffuse, located in the posterior medial tibial region, and activity related. Study Design: Systematic review with meta-analysis. Level of evidence: Level 4. Data Extraction: Titles and abstracts were reviewed to eliminate citations that did not meet the criteria for inclusion. Study characteristics identified a priori were extracted for data analysis. Statistical heterogeneity was examined using the I2 index and Cochran Q test, and a random-effects model was used to calculate the meta-analysis when 2 or more studies examined a risk factor. Two authors independently assessed study quality. Results: Eighty-three articles met the inclusion criteria, and 22 articles included risk factor data. Of the 27 risk factors that were in 2 or more studies, 5 risk factors showed a significant pooled effect and low statistical heterogeneity, including female sex (odds ratio [OR], 2.35; CI, 1.58-3.50), increased weight (standardized mean difference [SMD], 0.24; CI, 0.03-0.45), higher navicular drop (SMD, 0.44; CI, 0.21-0.67), previous running injury (OR, 2.18; CI, 1.00-4.72), and greater hip external rotation with the hip in flexion (SMD, 0.44; CI, 0.23-0.65). The remaining risk factors had a nonsignificant pooled effect or significant pooled effect with high statistical heterogeneity. Conclusion: Female sex, increased weight, higher navicular drop, previous running injury, and greater hip external rotation with the hip in flexion are risk factors for the development of MTSS
    corecore