6 research outputs found

    Blackcurrant Alters Physiological Responses and Femoral Artery Diameter During Sustained Isometric Contraction

    Get PDF
    Blackcurrant is rich in anthocyanins that may affect exercise-induced physiological responses. We examined tissue oxygen saturation, muscle activity, cardiovascular responses and femoral artery diameter during a submaximal sustained isometric contraction. In a randomised, double-blind, crossover design, healthy men (n = 13, age: 25 ± 4 years, BMI: 25 ± 3 kg·m−2, mean ± SD) ingested New Zealand blackcurrant (NZBC) extract (600 mg·day−1 CurraNZ™) or placebo (PL) for 7-days separated by 14-days washout. Participants produced isometric maximal voluntary contractions (iMVC) and a 120-s 30%iMVC of the quadriceps with electromyography (EMG), near-infrared spectroscopy, hemodynamic and ultrasound recordings. There was no effect of NZBC extract on iMVC (NZBC: 654 ± 73, PL: 650 ± 78 N). During the 30%iMVC with NZBC extract, total peripheral resistance, systolic, diastolic, and mean arterial pressure were lower with increased cardiac output and stroke volume. With NZBC extract, EMG root mean square of the vastus medialis and muscle oxygen saturation were lower with higher total haemoglobin. During the 30%iMVC, femoral artery diameter was increased with NZBC extract at 30 (6.9%), 60 (8.2%), 90 (7.7%) and 120 s (6.0%). Intake of NZBC extract for 7-days altered cardiovascular responses, muscle oxygen saturation, muscle activity and femoral artery diameter during a 120-s 30%iMVC of the quadriceps. The present study provides insight into the potential mechanisms for enhanced exercise performance with intake of blackcurrant

    New Zealand Blackcurrant Extract Improves Cycling Performance and Fat Oxidation in Cyclists

    Get PDF
    PURPOSE: Blackcurrant intake increases peripheral blood flow in humans, potentially by anthocyanin-induced vasodilation which may affect substrate delivery and exercise performance. We examined the effects of New Zealand blackcurrant (NZBC) extract on substrate oxidation, cycling time-trial performance and plasma lactate responses following the time-trial in trained cyclists. METHODS: Using a randomized, double-blind, crossover design, fourteen healthy men (age: 38 ± 13 years, height: 178 ± 4 cm, body mass: 77 ± 9 kg, V?O2max: 53 ± 6 ml·kg-1·min-1, mean ± SD) ingested NZBC extract (300 mg?day-1 CurraNZ™ containing 105 mg anthocyanin) or placebo (PL, 300 mg microcrystalline cellulose M102) for 7-days (washout 14-days). On day 7, participants performed 30 min of cycling (3x10 min at 45, 55 and 65% V?O2max), followed by a 16.1 km time-trial with lactate sampling during a 20-minute passive recovery. RESULTS: NZBC extract increased fat oxidation at 65% V?O2max by 27% (P < 0.05) and improved 16.1 km time-trial performance by 2.4% (NZBC: 1678 ± 108 s, PL: 1722 ± 131 s, P < 0.05). Plasma lactate was higher with NZBC extract immediately following the time-trial (NZBC: 7.06 ± 1.73 mmol?L-1, PL: 5.92 ± 1.58 mmol?L-1 P < 0.01). CONCLUSIONS: Seven days intake of New Zealand blackcurrant extract improves 16.1 km cycling time-trial performance and increases fat oxidation during moderate intensity cycling

    Cardiovascular Function During Supine Rest in Endurance Trained Males with New Zealand Blackcurrant: A Dose-Response Study

    Get PDF
    Purpose Blackcurrant contains anthocyanins that could alter cardiovascular function and reduce cardiovascular disease risk. We examined dose responses of New Zealand blackcurrant (NZBC) extract on cardiovascular function during supine rest. Methods Fifteen endurance trained male cyclists (age: 38±12 years, height: 178±5 cm, body mass: 76±10 kg, V?O2max: 56±8 mL?kg-1?min-1, mean±SD) were randomly assigned using a counterbalanced Latin square design to complete four conditions, a control of no NZBC, or one of three doses (300, 600 or 900 mg?day-1) of NZBC extract (CurraNZTM) for seven-days with a fourteen-day washout. Cardiovascular function (i.e. blood pressure, heart rate, ejection time, cardiac output, stroke volume and total peripheral resistance) during supine rest was examined (Portapres® Model 2). Results Systolic and diastolic blood pressure, heart rate and ejection time were unchanged by NZBC. A dose effect (P<0.05) was observed for cardiac output, stroke volume and total peripheral resistance. A trend for a dose effect was observed for mean arterial blood pressure. Cardiac output increased by 0.6±0.6 L·min-1 (15%) and 1.0±1.0 L·min-1 (28%) and stroke volume by 5±8 mL (7%) and 6±17 mL (18%) between control and 600, and 900 mg?day-1, respectively. Total peripheral resistance decreased by 4±3 mmHg·L-1·min-1 (20%) and 5±9 mmHg·L-1·min-1 (20%) for 600, and 900 mg?day-1. Conclusion Seven-days intake of New Zealand blackcurrant extract demonstrated dose-dependent changes on some cardiovascular parameters during supine rest in endurance-trained male cyclists

    The metabolic equivalents of one-mile walking by older adults; implications for health promotion

    Get PDF
    Background: Instructions for older adults regarding the intensity of walking may not elicit an intensity to infer health gains. We recorded the metabolic equivalents (METs) during a 1-mile walk using constant and predicted values of resting MET in older adults to establish walking guidelines for health promotion and participation.Methods: In a cross-sectional design study, participants (15 men, 10 women) walked 1-mile over ground, in a wooden floored gymnasium, wearing the Cosmed K4b2 for measurement of energy expenditure. Constant or predicted values for resting MET were used to calculate the number of 1-mile walks to meet 450-750 MET∙min∙wk-1.Results: Participants had MET values higher than 3 for both methods, with 29% and 64% of the participants higher than 6 for a constant and predicted MET value, respectively. The METs of the1-mile walk were (mean ± SD) 6 ± 1 and 7 ± 1 METs using constant and predicted resting MET,and similar for men (constant: 6 ± 1 METs; predicted: 7 ± 1 METs) and women (constant: 5±1METs; predicted: 6 ± 1 METs) (P > 0.05).Conclusion: Older adults that are instructed to walk 1-mile at a fast and constant pace meet the minimum required intensity for physical activity, and public health guidelines. Health professionals, that administer exercise, could encourage older adults to accumulate between six and nine 1-mile walks per week for health gains

    Effect of New Zealand Blackcurrant Extract on Physiological Responses at Rest and during Brisk Walking in Southeast Asian Men: A Randomized, Double-Blind, Placebo-Controlled, Crossover Study

    Get PDF
    New Zealand blackcurrant (NZBC) extract affects cardiovascular and metabolic responses during rest and exercise in Caucasian men. Ethnicity and nutritional habits may affect responses to nutritional ergogenic aids. We examined the effects of NZBC extract on cardiovascular, metabolic, and physiological responses during seated rest and moderate-intensity exercise in Southeast Asian men. Seventeen healthy Thai men (age: 22 &#177; 3 years; body mass index (BMI): 21.8 &#177; 1.1 kg&#183;m&#8722;2) participated. Resting metabolic equivalent (1-MET) was measured (Oxycon&#8482; mobile, Germany), and an incremental walking protocol was completed to establish the relationship between walking speed and MET. In a double-blind, randomized, placebo-controlled, crossover design, cardiovascular (Physioflow, n = 12) and physiological responses (Oxycon, n = 17) were measured during both seated rest and a 30-min treadmill walk at five metabolic equivalent (5-MET), with either a seven-day intake of placebo (PL) or two capsules of NZBC extract (each 300 mg capsule contains 35% blackcurrant extract) with a 14-day washout. Paired t-tests were used with significance accepted at p &lt; 0.05 and a trend for 0.05 &gt; p &#8804; 0.10. During 30 min of treadmill walking at 5-MET, no differences were observed for heart rate and substrate oxidation. With intake of NZBC during treadmill walking, there was a trend for increased stroke volume by 12% (PL: 83.2 &#177; 25.1; NZBC: 93.0 &#177; 24.3 mL; p = 0.072) and cardiac output increased by 12% (PL: 9.2 &#177; 2.6; NZBC: 10.3 &#177; 2.8 L&#183;min&#8722;1; p = 0.057). Systemic vascular resistance decreased by 10% (PL: 779 &#177; 267; NZBC: 697 &#177; 245 dyn&#183;s&#183;cm&#8722;5; p = 0.048). NZBC extract had no effect on metabolic, physiological, and cardiovascular parameters during seated rest and exercise-induced fat oxidation in Thai men, in contrast to observations in Caucasian men. During treadmill walking, Thai men showed cardiovascular response, indicating vasodilatory effects during moderate-intensity exercise with the intake of NZBC extract. Our findings suggest that the ergogenic responses to anthocyanin intake from New Zealand blackcurrant may be ethnicity-dependent
    corecore