379 research outputs found

    New Concepts in Pacemaker Syndrome

    Get PDF
    After implantation of a permanent pacemaker, patients may experience severe symptoms of dyspnea, palpitations, malaise, and syncope resulting from pacemaker syndrome. Although pacemaker syndrome is most often ascribed to the loss of atrioventricular (A-V) synchrony, more recent data may also implicate left ventricular dysynchrony caused by right ventricular pacing. Previous studies have not shown reductions in mortality or stroke with rate-modulated dual-chamber (DDDR) pacing as compared to ventricular-based (VVI) pacing. The benefits in A-V sequential pacing with the DDDR mode are likely mitigated by the interventricular (V-V) dysynchrony imposed by the high percentage of ventricular pacing commonly seen in the DDDR mode. Programming DDDR pacemakers to encourage intrinsic A-V conduction and reduce right ventricular pacing will likely decrease heart failure and pacemaker syndrome. Studies are currently ongoing to address these questions

    Crystallization of random trigonometric polynomials

    Full text link
    We give a precise measure of the rate at which repeated differentiation of a random trigonometric polynomial causes the roots of the function to approach equal spacing. This can be viewed as a toy model of crystallization in one dimension. In particular we determine the asymptotics of the distribution of the roots around the crystalline configuration and find that the distribution is not Gaussian.Comment: 10 pages, 3 figure

    Changing Professional Identity in the Transition from Practitioner to Lecturer in Higher Education: an Interpretive Phenomenological Analysis

    Get PDF
    This research explores the experiences of five professional practitioners from disciplines including teaching, youth work, sport and health who had become lecturers in Higher Education. Their experiences are considered using Interpretative Phenomenological Analysis and tentative conclusions are reached on the meaning of such experiences for the individuals. The work extends previous studies (Shreeve 2010, 2011; Gourlay 2011a, 2011b; Boyd & Harris 2010) to consider the relationship between knowledge and influence and how institutional preference for knowledge gained from research impacts on the validity of knowledge derived from professional experience. The research finds shared feelings associated with inauthenticity and loss arising from concerns that the contribution of the professional in Higher Education is undervalued. The research challenges the assumption that professional practitioners adopt the professional identity of a lecturer in Higher Education instead finding that they create their own professional identities in the liminal space between the professional and academic domains, but points to difficulties associated with constructed nature of such professional identities within the institutional structure of a Higher Education institution

    Phytophthora functional genomics database (PFGD): functional genomics of phytophthora–plant interactions

    Get PDF
    The Phytophthora Functional Genomics Database (PFGD; ), developed by the National Center for Genome Resources in collaboration with The Ohio State University-Ohio Agricultural Research and Development Center (OSU-OARDC), is a publicly accessible information resource for Phytophthora–plant interaction research. PFGD contains transcript, genomic, gene expression and functional assay data for Phytophthora infestans, which causes late blight of potato, and Phytophthora sojae, which affects soybeans. Automated analyses are performed on all sequence data, including consensus sequences derived from clustered and assembled expressed sequence tags. The PFGD search filter interface allows intuitive navigation of transcript and genomic data organized by library and derived queries using modifiers, annotation keywords or sequence names. BLAST services are provided for libraries built from the transcript and genomic sequences. Transcript data visualization tools include Quality Screening, Multiple Sequence Alignment and Features and Annotations viewers. A genomic browser that supports comparative analysis via novel dynamic functional annotation comparisons is also provided. PFGD is integrated with the Solanaceae Genomics Database (SolGD; ) to help provide insight into the mechanisms of infection and resistance, specifically as they relate to the genus Phytophthora pathogens and their plant hosts

    The Legume Information System (LIS): an integrated information resource for comparative legume biology

    Get PDF
    The Legume Information System (LIS) (http://www.comparative-legumes.org), developed by the National Center for Genome Resources in cooperation with the USDA Agricultural Research Service (ARS), is a comparative legume resource that integrates genetic and molecular data from multiple legume species enabling cross-species genomic and transcript comparisons. The LIS virtual plant interface allows simplified and intuitive navigation of transcript data from Medicago truncatula, Lotus japonicus, Glycine max and Arabidopsis thaliana. Transcript libraries are represented as images of plant organs in different developmental stages, which are selected to query the analyzed and annotated data. Complex queries can be accomplished by adding modifiers, keywords and sequence names. The LIS also contains annotated genomic data featuring transcript alignments to validate gene predictions as well as motif and similarity analyses. The genomic browser supports comparative analysis via novel dynamic functional annotation comparisons. CMap, developed as part of the GMOD project (http://www.gmod.org/cmap/index.shtml), has been incorporated to support comparative analyses of community linkage and physical map data. LIS is being expanded to incorporate gene expression and biochemical pathways which will be seamlessly integrated forming a knowledge discovery framework

    Comparisons of De Novo Transcriptome Assemblers in Diploid and Polyploid Species Using Peanut (Arachis spp.) RNA-Seq Data

    Get PDF
    The narrow genetic base and limited genetic information on Arachis species have hindered the process of marker-assisted selection of peanut cultivars. However, recent developments in sequencing technologies have expanded opportunities to exploit genetic resources, and at lower cost. To use the genetic information for Arachis species available at the transcriptome level, it is important to have a good quality reference transcriptome. The available Tifrunner 454 FLEX transcriptome sequences have an assembly with 37,000 contigs and low N50 values of 500-751 bp. Therefore, we generated de novo transcriptome assemblies, with about 38 million reads in the tetraploid cultivar OLin, and 16 million reads in each of the diploids, A. duranensis K38901 and A. ipaënsis KGBSPSc30076 using three different de novo assemblers, Trinity, SOAPdenovo-Trans and TransAByss. All these assemblers can use single kmer analysis, and the latter two also permit multiple kmer analysis. Assemblies generated for all three samples had N50 values ranging from 1278-1641 bp in Arachis hypogaea (AABB), 1401-1492 bp in Arachis duranensis (AA), and 1107-1342 bp in Arachis ipaënsis (BB). Comparison with legume ESTs and protein databases suggests that assemblies generated had more than 40% full length transcripts with good continuity. Also, on mapping the raw reads to each of the assemblies generated, Trinity had a high success rate in assembling sequences compared to both TransAByss and SOAPdenovo-Trans. De novo assembly of OLin had a greater number of contigs (67,098) and longer contig length (N50 = 1,641) compared to the Tifrunner TSA. Despite having shorter read length (2 × 50) than the Tifrunner 454FLEX TSA, de novo assembly of OLin proved superior in comparison. Assemblies generated to represent different genome combinations may serve as a valuable resource for the peanut research community

    Koinonia

    Get PDF
    Best Practices FeaturesStudents of Concern Committee: Coordinating Care, Connie Horton and Mark Davis Want to Change Student Culture on Your Campus? Do the CORE!, Eric Lowdermilk Spotlight FeaturesYou Only Get 1 Up, Justin Heth and Caleb Farmer The Season, Sharon Virkler Book ReviewsThe Future of Christian Learning: An Evangelical and Catholic Dialogue (by Mark Noll and James Turner), reviewed by Philip D. Byers Restoring Rebecca: A Story of Traumatic Stress, Caregiving and the Unmasking of a Superhero (by Christopher Marchand), reviewed by David M. Johnstone A Review of Culture Making: Recovering our Creative Calling (by Andy Crouch), reviewed by Jeff Rioux Revisiting How Minority Students Experience College: Implications for Planning and Policy (by LKemuel Watson, Melvin Terrell, Doris Wright, Fred Bonner II, Michael Cuyjet, James Gold, Donna Rudy and Dawn Person), reviewed by Joshua Canada Excerpts from Breathe: Finding Freedom to Thrive in Relationships after Childhood Sexual Abuse, Nicole Braddock Bromley ReflectionsMy Journey into Student Affairs, Kim Stave FeaturesThe President\u27s Corner Editor\u27s Deskhttps://pillars.taylor.edu/acsd_koinonia/1079/thumbnail.jp

    WARNING: Physics Envy May Be Hazardous To Your Wealth!

    Get PDF
    The quantitative aspirations of economists and financial analysts have for many years been based on the belief that it should be possible to build models of economic systems - and financial markets in particular - that are as predictive as those in physics. While this perspective has led to a number of important breakthroughs in economics, "physics envy" has also created a false sense of mathematical precision in some cases. We speculate on the origins of physics envy, and then describe an alternate perspective of economic behavior based on a new taxonomy of uncertainty. We illustrate the relevance of this taxonomy with two concrete examples: the classical harmonic oscillator with some new twists that make physics look more like economics, and a quantitative equity market-neutral strategy. We conclude by offering a new interpretation of tail events, proposing an "uncertainty checklist" with which our taxonomy can be implemented, and considering the role that quants played in the current financial crisis.Comment: v3 adds 2 reference
    • …
    corecore