377 research outputs found

    p190RhoGAP is the convergence point of adhesion signals from Ī±5Ī²1 integrin and syndecan-4

    Get PDF
    The fibronectin receptors Ī±5Ī²1 integrin and syndecan-4 cocluster in focal adhesions and coordinate cell migration by making individual contributions to the suppression of RhoA activity during matrix engagement. p190Rhoā€“guanosine triphosphataseā€“activating protein (GAP) is known to inhibit RhoA during the early stages of cell spreading in an Src-dependent manner. This paper dissects the mechanisms of p190RhoGAP regulation and distinguishes the contributions of Ī±5Ī²1 integrin and syndecan-4. Matrix-induced tyrosine phosphorylation of p190RhoGAP is stimulated solely by engagement of Ī±5Ī²1 integrin and is independent of syndecan-4. Parallel engagement of syndecan-4 causes redistribution of the tyrosine-phosphorylated pool of p190RhoGAP between membrane and cytosolic fractions by a mechanism that requires direct activation of protein kinase C Ī± by syndecan-4. Activation of both pathways is necessary for the efficient regulation of RhoA and, as a consequence, focal adhesion formation. Accordingly, we identify p190RhoGAP as the convergence point for adhesive signals mediated by Ī±5Ī²1 integrin and syndecan-4. This molecular mechanism explains the cooperation between extracellular matrix receptors during cell adhesion

    Syndecan-4 phosphorylation is a control point for integrin recycling

    Get PDF
    Precise spatiotemporal coordination of integrin adhesion complex dynamics is essential for efficient cell migration. For cells adherent to fibronectin, differential engagement of Ī±5Ī²1 and Ī±VĪ²3 integrins is used to elicit changes in adhesion complex stability, mechanosensation, matrix assembly, and migration, but the mechanisms responsible for receptor regulation have remained largely obscure. We identify phosphorylation of the membrane-intercalated proteoglycan syndecan-4 as an essential switch controlling integrin recycling. Src phosphorylates syndecan-4 and, by driving syntenin binding, leads to suppression of Arf6 activity and recycling of Ī±VĪ²3 to the plasma membrane at the expense of Ī±5Ī²1. The resultant elevation in Ī±VĪ²3 engagement promotes stabilization of focal adhesions. Conversely, abrogation of syndecan-4 phosphorylation drives surface expression of Ī±5Ī²1, destabilizes adhesion complexes, and disrupts cell migration. These data identify the dynamic spatiotemporal regulation of Src-mediated syndecan-4 phosphorylation as an essential switch controlling integrin trafficking and adhesion dynamics to promote efficient cell migration

    Test System Development for a Novel Plasma Propulsion Device

    Get PDF
    The Magdrive: A next generation in-space electric propulsion system based on the generation of super dense plasma and magnetic plume confinement. The system offers high levels of thrust, along with variable specific impulse that allows the user to achieve the high thrust required for responsive, rapid manoeuvres, or the efficient high specific impulse for long duration thrusts, all with one device

    Coronin-1C Protein and Caveolin Protein Provide Constitutive and Inducible Mechanisms of Rac1 Protein Trafficking

    Get PDF
    Sustained directional fibroblast migration requires both polarized activation of the protrusive signal, Rac1, and redistribution of inactive Rac1 from the rear of the cell so that it can be redistributed or degraded. In this work, we determine how alternative endocytic mechanisms dictate the fate of Rac1 in response to the extracellular matrix environment. We discover that both coronin-1C and caveolin retrieve Rac1 from similar locations at the rear and sides of the cell. We find that coronin-1C-mediated extraction, which is responsible for Rac1 recycling, is a constitutive process that maintains Rac1 protein levels within the cell. In the absence of coronin-1C, the effect of caveolin-mediated endocytosis, which targets Rac1 for proteasomal degradation, becomes apparent. Unlike constitutive coronin-1C-mediated trafficking, caveolin-mediated Rac1 endocytosis is induced by engagement of the fibronectin receptor syndecan-4. Such an inducible endocytic/degradation mechanism would predict that, in the presence of fibronectin, caveolin defines regions of the cell that are resistant to Rac1 activation but, in the absence of fibronectin leaves more of the membrane susceptible to Rac1 activation and protrusion. Indeed, we demonstrate that fibronectin-stimulated activation of Rac1 is accelerated in the absence of caveolin and that, when caveolin is knocked down, polarization of active Rac1 is lost in FRET experiments and culminates in shunting migration in a fibrous fibronectin matrix. Although the concept of polarized Rac1 activity in response to chemoattractants has always been apparent, our understanding of the balance between recycling and degradation explains how polarity can be maintained when the chemotactic gradient has faded

    SNX17 protects integrins from degradation by sorting between lysosomal and recycling pathways.

    Get PDF
    The FERM-like domain-containing sorting nexins of the SNX17/SNX27/SNX31 family have been proposed to mediate retrieval of transmembrane proteins from the lysosomal pathway. In this paper, we describe a stable isotope labeling with amino acids in culture-based quantitative proteomic approach that allows an unbiased, global identification of transmembrane cargoes that are rescued from lysosomal degradation by SNX17. This screen revealed that several integrins required SNX17 for their stability, as depletion of SNX17 led to a loss of Ī²1 and Ī²5 integrins and associated a subunits from HeLa cells as a result of increased lysosomal degradation. SNX17 bound to the membrane distal NPXY motif in Ī² integrin cytoplasmic tails, thereby preventing lysosomal degradation of Ī² integrins and their associated a subunits. Furthermore, SNX17-dependent retrieval of integrins did not depend on the retromer complex. Consistent with an effect on integrin recycling, depletion of SNX17 also caused alterations in cell migration. Our data provide mechanistic insight into the retrieval of internalized integrins from the lysosomal degradation pathway, a prerequisite for subsequent recycling of these matrix receptors

    Chlorhexidine hexametaphosphate as a wound care material coating: antimicrobial efficacy, toxicity and effect on healing.

    Get PDF
    AIM: In this study, chlorhexidine hexametaphosphate (CHX-HMP) is investigated as a persistent antimicrobial coating for wound care materials. MATERIALS & METHODS: CHX-HMP was used as a wound care material coating and compared with chlorhexidine digluconate materials with respect to antimicrobial efficacy, toxicity and wound closure. RESULTS: Antimicrobial efficacy at day 1, 3 and 7 was observed with experimental and commercial materials. CHX-HMP coated materials had less toxic effect on human placental cells than commercial chlorhexidine dressings. CHX-HMP in pluronic gel did not delay healing but reduced wound colonization by E. faecalis. CONCLUSION: CHX-HMP could become a useful component of wound care materials with sustained antimicrobial efficacy, lower toxicity than chlorhexidine digluconate materials, and reduction in wound colonization without affecting closure

    Sustaining The Saco Estuary: Final Report 2015

    Get PDF
    This study focuses on the Saco estuary, the tidal portion of the Saco River, which drains the largest watershed in southern Maine. With headwaters in the White Mountains of New Hampshire, the watershed encompasses more than 4,400 km2, and provides clean healthy drinking water to over 100,000 people living and working in communities in southern Maine. When the study began in 2009, very little was known about the ecology of the Saco estuary. Researchers at the University of New England and the Wells National Estuarine Research Reserve employed the process of collaborative learning to bring together people who care about the estuary in order to identify their concerns. A Stewardship Network composed of people employed by municipal, state and federal governments, water supply organizations and businesses, volunteers from municipal boards making land use decisions, land trusts, property owners and representatives from other organizations that are uniquely focused on the region was formed. The Stewardship Network helped to define the project goals and objectives, and provided input and guidance over the five-year project. This report explains what the researchers discovered about the ecology of the estuary, along with what they learned about its social and economic components. This baseline assessment contributes to the long-term goal of restoring and sustaining the structure and function of the estuary, and supports the efforts of government, businesses and local organizations that value the estuary and depend upon the natural services it provides

    The role of biophysical cohesion on subaqueous bed form size

    Get PDF
    Biologically active, fine-grained sediment forms abundant sedimentary deposits on Earth's surface, and mixed mud-sand dominates many coasts, deltas, and estuaries. Our predictions of sediment transport and bed roughness in these environments presently rely on empirically based bed form predictors that are based exclusively on biologically inactive cohesionless silt, sand, and gravel. This approach underpins many paleoenvironmental reconstructions of sedimentary successions, which rely on analysis of cross-stratification and bounding surfaces produced by migrating bed forms. Here we present controlled laboratory experiments that identify and quantify the influence of physical and biological cohesion on equilibrium bed form morphology. The results show the profound influence of biological cohesion on bed form size and identify how cohesive bonding mechanisms in different sediment mixtures govern the relationships. The findings highlight that existing bed form predictors require reformulation for combined biophysical cohesive effects in order to improve morphodynamic model predictions and to enhance the interpretations of these environments in the geological record

    A Hydrophobic Gate in an Ion Channel: The Closed State of the Nicotinic Acetylcholine Receptor

    Full text link
    The nicotinic acetylcholine receptor (nAChR) is the prototypic member of the `Cys-loop' superfamily of ligand-gated ion channels which mediate synaptic neurotransmission, and whose other members include receptors for glycine, gamma-aminobutyric acid, and serotonin. Cryo-electron microscopy has yielded a three dimensional structure of the nAChR in its closed state. However, the exact nature and location of the channel gate remains uncertain. Although the transmembrane pore is constricted close to its center, it is not completely occluded. Rather, the pore has a central hydrophobic zone of radius about 3 A. Model calculations suggest that such a constriction may form a hydrophobic gate, preventing movement of ions through a channel. We present a detailed and quantitative simulation study of the hydrophobic gating model of the nicotinic receptor, in order to fully evaluate this hypothesis. We demonstrate that the hydrophobic constriction of the nAChR pore indeed forms a closed gate. Potential of mean force (PMF) calculations reveal that the constriction presents a barrier of height ca. 10 kT to the permeation of sodium ions, placing an upper bound on the closed channel conductance of 0.3 pS. Thus, a 3 A radius hydrophobic pore can form a functional barrier to the permeation of a 1 A radius Na+ ion. Using a united atom force field for the protein instead of an all atom one retains the qualitative features but results in differing conductances, showing that the PMF is sensitive to the detailed molecular interactions.Comment: Accepted by Physical Biology; includes a supplement and a supplementary mpeg movie can be found at http://sbcb.bioch.ox.ac.uk/oliver/download/Movies/watergate.mp
    • ā€¦
    corecore