332 research outputs found
Multiscale modelling of cancer progression and treatment control : the role of intracellular heterogeneities in chemotherapy treatment
Cancer is a complex, multiscale process involving interactions at intracellular, intercellular and tissue scales that are in turn susceptible to microenvironmental changes. Each individual cancer cell within a cancer cell mass is unique, with its own internal cellular pathways and biochemical interactions. These interactions contribute to the functional changes at the cellular and tissue scale, creating a heterogenous cancer cell population. Anticancer drugs are effective in controlling cancer growth by inflicting damage to various target molecules and thereby triggering multiple cellular and intracellular pathways, leading to cell death or cell-cycle arrest. One of the major impediments in the chemotherapy treatment of cancer is drug resistance driven by multiple mechanisms, including multi-drug and cell-cycle mediated resistance to chemotherapy drugs. In this article, we discuss two hybrid multiscale modelling approaches, incorporating multiple interactions involved in the sub-cellular, cellular and microenvironmental levels to study the effects of cell-cycle, phase-specific chemotherapy on the growth and progression of cancer cells.PostprintPeer reviewe
Mathematical Modelling of Cancer Invasion:The Multiple Roles of TGF-β Pathway on Tumour Proliferation and Cell Adhesion
VB acknowledges support from an Engineering and Physical Sciences Research Council (UK) grant number EP/L504932/1. RE was partially supported by an Engineering and Physical Sciences Research Council (UK) grant number EP/K033689/1.In this paper, we develop a non-local mathematical model describing cancer cell invasion and movement as a result of integrin-controlled cell–cell adhesion and cell–matrix adhesion, and transforming growth factor-beta (TGF-β) effect on cell proliferation and adhesion, for two cancer cell populations with different levels of mutation. The model consists of partial integro-differential equations describing the dynamics of two cancer cell populations, coupled with ordinary differential equations describing the extracellular matrix (ECM) degradation and the production and decay of integrins, and with a parabolic PDE governing the evolution of TGF-β concentration. We prove the global existence of weak solutions to the model. We then use our model to explore numerically the role of TGF-β in cell aggregation and movement.Publisher PDFPeer reviewe
Quantitative Predictive Modelling Approaches to Understanding Rheumatoid Arthritis:A Brief Review
Rheumatoid arthritis is a chronic autoimmune disease that is a major public health challenge. The disease is characterised by inflammation of synovial joints and cartilage erosion, which lead to chronic pain, poor life quality and, in some cases, mortality. Understanding the biological mechanisms behind the progression of the disease, as well as developing new methods for quantitative predictions of disease progression in the presence/absence of various therapies is important for the success of therapeutic approaches. The aim of this study is to review various quantitative predictive modelling approaches for understanding rheumatoid arthritis. To this end, we start by briefly discussing the biology of this disease and some current treatment approaches, as well as emphasising some of the open problems in the field. Then, we review various mathematical mechanistic models derived to address some of these open problems. We discuss models that investigate the biological mechanisms behind the progression of the disease, as well as pharmacokinetic and pharmacodynamic models for various drug therapies. Furthermore, we highlight models aimed at optimising the costs of the treatments while taking into consideration the evolution of the disease and potential complications.Publisher PDFPeer reviewe
On the stability of homogeneous steady states of a chemotaxis system with logistic growth term
We consider a nonlinear PDEs system of Parabolic-Elliptic type with chemotactic terms. The system models the movement of a population “n” towards a higher concentration of a chemical “c” in a bounded domain Ω. We consider constant chemotactic sensitivity χ and an elliptic equation to describe the distribution of the chemicalnt − dnΔn = −χdiv(n∇c) + μn(1−n), −dcΔc + c = h(n) for a monotone increasing and lipschitz function h. We study the asymptotic behavior of solutions under the assumption of 2χ∣h′∣ < μ. As a result of the asymptotic stability we obtain the uniqueness of the strictly positive steady states.PostprintPeer reviewe
Spatio-temporal models of synthetic genetic oscillators
Signal transduction pathways play a major role in many important aspects of cellular function e.g. cell division, apoptosis. One important class of signal transduction pathways is gene regulatory networks (GRNs). In many GRNs, proteins bind to gene sites in the nucleus thereby altering the transcription rate. Such proteins are known as transcription factors. If the binding reduces the transcription rate there is a negative feedback leading to oscillatory behaviour in mRNA and protein levels, both spatially (e.g. by observing fluorescently labelled molecules in single cells) and temporally (e.g. by observing protein/mRNA levels over time). Recent computational modelling has demonstrated that spatial movement of the molecules is a vital component of GRNs and may cause the oscillations. These numerical findings have subsequently been proved rigorously i.e. the diffusion coefficient of the protein/mRNA acts as a bifurcation parameter and gives rise to a Hopf bifurcation. In this paper we first present a model of the canonical GRN (the Hes1 protein) and show the effect of varying the spatial location of gene and protein production sites on the oscillations. We then extend the approach to examine spatio-temporal models of synthetic gene regulatory networks e.g. n-gene repressilators and activator-repressor systems.PostprintPeer reviewe
The role of dimerisation and nuclear transport in the Hes1 gene regulatory network
Hes1 is a member of the family of basic helix-loop-helix transcription factors and the Hes1 gene regulatory network (GRN) may be described as the canonical example of transcriptional control in eukaryotic cells, since it involves only the Hes1 protein and its own mRNA. Recently, the Hes1 protein has been established as an excellent target for an anti-cancer drug treatment, with the design of a small molecule Hes1 dimerisation inhibitor representing a promising if challenging approach to therapy. In this paper, we extend a previous spatial stochastic model of the Hes1 GRN to include nuclear transport and dimerisation of Hes1 monomers. Initially, we assume that dimerisation occurs only in the cytoplasm, with only dimers being imported into the nucleus. Stochastic simulations of this novel model using the URDME software show that oscillatory dynamics in agreement with experimental studies are retained. Furthermore, we find that our model is robust to changes in the nuclear transport and dimerisation parameters. However, since the precise dynamics of the nuclear import of Hes1 and the localisation of the dimerisation reaction are not known, we consider a second modelling scenario in which we allow for both Hes1 monomers and dimers to be imported into the nucleus, and we allow dimerisation of Hes1 to occur everywhere in the cell. Once again, computational solutions of this second model produce oscillatory dynamics in agreement with experimental studies. We also explore sensitivity of the numerical solutions to nuclear transport and dimerisation parameters. Finally, we compare and contrast the two different modelling scenarios using numerical experiments that simulate dimer disruption, and suggest a biological experiment that could distinguish which model more faithfully captures the Hes1 GRN.PostprintPeer reviewe
The role of spatial variations of abiotic factors in mediating intratumour phenotypic heterogeneity
We present here a space- and phenotype-structured model of selection dynamics between cancer cells within a solid tumour. In the framework of this model, we combine formal analyses with numerical simulations to investigate in silico the role played by the spatial distribution of abiotic components of the tumour microenvironment in mediating phenotypic selection of cancer cells. Numerical simulations are performed both on the 3D geometry of an in silico multicellular tumour spheroid and on the 3D geometry of an in vivo human hepatic tumour, which was imaged using computerised tomography. The results obtained show that inhomogeneities in the spatial distribution of oxygen, currently observed in solid tumours, can promote the creation of distinct local niches and lead to the selection of different phenotypic variants within the same tumour. This process fosters the emergence of stable phenotypic heterogeneity and supports the presence of hypoxic cells resistant to cytotoxic therapy prior to treatment. Our theoretical results demonstrate the importance of integrating spatial data with ecological principles when evaluating the therapeutic response of solid tumours to cytotoxic therapy
- …
