646 research outputs found

    Do Two Temperature Debris Disks Have Multiple Belts?

    Full text link
    We present a study of debris disks whose spectra are well modelled by dust emission at two different temperatures. These disks are typically assumed to be a sign of multiple belts, which in only a few cases have been confirmed via high resolution observations. We first compile a sample of two-temperature disks to derive their properties, summarised by the ratios of the warm and cool component temperatures and fractional luminosities. The ratio of warm to cool temperatures is constant in the range 2-4, and the temperatures of both warm and cool components increases with stellar mass. We then explore whether this emission can arise from dust in a single narrow belt, with the range of temperatures arising from the size variation of grain temperatures. This model can produce two-temperature spectra for Sun-like stars, but is not supported where it can be tested by observed disk sizes and far-IR/mm spectral slopes. Therefore, while some two-temperature disks arise from single belts, it is probable that most have multiple spatial components. These disks are plausibly similar to the outer Solar System's configuration of Asteroid and Edgeworth-Kuiper belts separated by giant planets. Alternatively, the inner component could arise from inward scattering of material from the outer belt, again due to intervening planets. In either case, we suggest that the ratio of warm/cool component temperatures is indicative of the scale of outer planetary systems, which typically span a factor of about ten in radius.Comment: accepted to MNRA

    Resolved Imaging of the HD191089 Debris Disc

    Full text link
    Two thirds of the F star members of the 12 Myr old Beta Pictoris Moving Group (BPMG) show significant excess emission in the mid-infrared, several million years after the expected dispersal of the protoplanetary disc. Theoretical models of planet formation suggest that this peak in the mid-infrared emission could be due to the formation of Pluto-sized bodies in the disc, which ignite the collisional cascade and enhance the production of small dust. Here we present resolved mid-infrared imaging of the disc of HD191089 (F5V in the BPMG) and consider its implications for the state of planet formation in this system. HD191089 was observed at 18.3 microns using T-ReCS on Gemini South and the images were compared to models of the disc to constrain the radial distribution of the dust. The emission observed at 18.3 microns is shown to be significantly extended beyond the PSF at a position angle of 80 degrees. This is the first time dust emission has been resolved around HD191089. Modelling indicates that the emission arises from a dust belt from 28-90 AU, inclined at 35 degrees from edge on with very little emission from the inner 28AU of the disc, indicating the presence of an inner cavity. The steep slope of the inner edge is more consistent with truncation by a planet than with ongoing stirring. A tentative brightness asymmetry F(W)/F(E)=0.80+/-0.12 (1.8 sigma) between the two sides of the disc could be evidence for perturbations from a massive body on an eccentric orbit in the system.Comment: 11 Pages Accepted to MNRA

    Hamiltonian model of capture into mean motion resonance

    Full text link
    Mean motion resonances are a common feature of both our own Solar System and of extrasolar planetary systems. Bodies can be trapped in resonance when their orbital semi-major axes change, for instance when they migrate through a protoplanetary disc. We use a Hamiltonian model to thoroughly investigate the capture behaviour for first and second order resonances. Using this method, all resonances of the same order can be described by one equation, with applications to specific resonances by appropriate scaling. We focus on the limit where one body is a massless test particle and the other a massive planet. We quantify how the the probability of capture into a resonance depends on the relative migration rate of the planet and particle, and the particle's eccentricity. Resonant capture fails for high migration rates, and has decreasing probability for higher eccentricities, although for certain migration rates, capture probability peaks at a finite eccentricity. We also calculate libration amplitudes and the offset of the libration centres for captured particles, and the change in eccentricity if capture does not occur. Libration amplitudes are higher for larger initial eccentricity. The model allows for a complete description of a particle's behaviour as it successively encounters several resonances. The model is applicable to many scenarios, including (i) Planet migration through gas discs trapping other planets or planetesimals in resonances; (ii) Planet migration through a debris disc; (iii) Dust migration through PR drag. Full details can be found in \cite{2010submitted}. (Abridged)Comment: 4 pages, Proceedings of IAUS276 "The Astrophysics of Planetary Systems: Formation, Structure, and Dynamical Evolution

    Constraining the orbits of sub-stellar companions imaged over short orbital arcs

    Full text link
    Imaging a star's companion at multiple epochs over a short orbital arc provides only four of the six coordinates required for a unique orbital solution. Probability distributions of possible solutions are commonly generated by Monte Carlo (MCMC) analysis, but these are biased by priors and may not probe the full parameter space. We suggest alternative methods to characterise possible orbits, which compliment the MCMC technique. Firstly the allowed ranges of orbital elements are prior-independent, and we provide means to calculate these ranges without numerical analyses. Hence several interesting constraints (including whether a companion even can be bound, its minimum possible semi-major axis and its minimum eccentricity) may be quickly computed using our relations as soon as orbital motion is detected. We also suggest an alternative to posterior probability distributions as a means to present possible orbital elements, namely contour plots of elements as functions of line of sight coordinates. These plots are prior-independent, readily show degeneracies between elements and allow readers to extract orbital solutions themselves. This approach is particularly useful when there are other constraints on the geometry, for example if a companion's orbit is assumed to be aligned with a disc. As examples we apply our methods to several imaged sub-stellar companions including Fomalhaut b, and for the latter object we show how different origin hypotheses affect its possible orbital solutions. We also examine visual companions of A- and G-type main sequence stars in the Washington Double Star Catalogue, and show that ≳50\gtrsim50 per cent must be unbound.Comment: Accepted for publication in MNRA
    • …
    corecore