192 research outputs found

    Scaling Qualitative Probability

    Full text link
    There are different approaches to qualitative probability, which includes subjective probability. We developed a representation of qualitative probability based on relational systems, which allows modeling uncertainty by probability structures and is more coherent than existing approaches. This setting makes it possible proving that any comparative probability is induced by some probability structure (Theorem 2.1), that classical probability is a probability structure (Theorem 2.2) and that inflated, i.e., larger than 1, probability is also a probability structure (Theorem 2.3). In addition, we study representation of probability structures by classical probability

    Mathematical Knowledge and the Role of an Observer: Ontological and epistemological aspects

    Full text link
    As David Berlinski writes (1997), the existence and nature of mathematics is a more compelling and far deeper problem than any of the problems raised by mathematics itself. Here we analyze the essence of mathematics making the main emphasis on mathematics as an advanced system of knowledge. This knowledge consists of structures and represents structures, existence of which depends on observers in a nonstandard way. Structural nature of mathematics explains its reasonable effectiveness

    Unified Foundations for Mathematics

    Full text link
    There are different meanings of foundation of mathematics: philosophical, logical, and mathematical. Here foundations are considered as a theory that provides means (concepts, structures, methods etc.) for the development of whole mathematics. Set theory has been for a long time the most popular foundation. However, it was not been able to win completely over its rivals: logic, the theory of algorithms, and theory of categories. Moreover, practical applications of mathematics and its inner problems caused creation of different generalization of sets: multisets, fuzzy sets, rough sets etc. Thus, we encounter a problem: Is it possible to find the most fundamental structure in mathematics? The situation is similar to the quest of physics for the most fundamental "brick" of nature and for a grand unified theory of nature. It is demonstrated that in contrast to physics, which is still in search for a unified theory, in mathematics such a theory exists. It is the theory of named sets

    Extended Probabilities: Mathematical Foundations

    Full text link
    There are important problems in physics related to the concept of probability. One of these problems is related to negative probabilities used in physics from 1930s. In spite of many demonstrations of usefulness of negative probabilities, physicists looked at them with suspicion trying to avoid this new concept in their theories. The main question that has bothered physicists is mathematical grounding and interpretation of negative probabilities. In this paper, we introduce extended probability as a probability function, which can take both positive and negative values. Defining extended probabilities in an axiomatic way, we show that classical probability is a positive section of extended probability

    Axiomatic Theory of Algorithms: Computability and Decidability in Algorithmic Classes

    Full text link
    Axiomatic approach has demonstrated its power in mathematics. The main goal of this preprint is to show that axiomatic methods are also very efficient for computer science. It is possible to apply these methods to many problems in computer science. Here the main modes of computer functioning and program execution are described, formalized, and studied in an axiomatic context. The emphasis is on three principal modes: computation, decision, and acceptation. Now the prevalent mode for computers is computation. Problems of artificial intelligence involve decision mode, while communication functions of computer demand accepting mode. The main goal of this preprint is to study properties of these modes and relations between them. These problems are closely related to such fundamental concepts of computer science and technology as computability, decidability, and acceptability. In other words, we are concerned with the question what computers and software systems can do working in this or that mode. Consequently, results of this preprint allow one to achieve higher understanding of computations and in such a way, to find some basic properties of computers and their applications. Classes of algorithms, which model different kinds of computers and software, are compared with respect to their computing, accepting or deciding power. Operations with algorithms and machines are introduced. Examples show how to apply axiomatic results to different classes of algorithms and machines in order to enhance their performance

    Elements of the System Theory of Time

    Full text link
    In the paper, elements of the system theory of time are presented, mathematical models for time are constructed, and various properties are deduced from the main principles of the system theory of time. This theory is a far-reaching development of the special relativity theory. One of the main principles of the special relativity theory is that two physical systems that are moving relative to each other have different times and it is necessary to use a correspondence between clocks in these systems to coordinate their times. Such correspondence is established by means of electromagnetic signals. In accordance with this principle, it is postulated in the system theory of time that each system has its own time. In some cases, two systems have the same time. In other cases, times of systems are coordinated or correlated. However, there are systems in which times are independent from one another

    Algorithmic Problem Complexity

    Full text link
    People solve different problems and know that some of them are simple, some are complex and some insoluble. The main goal of this work is to develop a mathematical theory of algorithmic complexity for problems. This theory is aimed at determination of computer abilities in solving different problems and estimation of resources that computers need to do this. Here we build the part of this theory related to static measures of algorithms. At first, we consider problems for finite words and study algorithmic complexity of such problems, building optimal complexity measures. Then we consider problems for such infinite objects as functions and study algorithmic complexity of these problems, also building optimal complexity measures. In the second part of the work, complexity of algorithmic problems, such as the halting problem for Turing machines, is measured by the classes of automata that are necessary to solve this problem. To classify different problems with respect to their complexity, inductive Turing machines, which extend possibilities of Turing machines, are used. A hierarchy of inductive Turing machines generates an inductive hierarchy of algorithmic problems. Here we specifically consider algorithmic problems related to Turing machines and inductive Turing machines, and find a place for these problems in the inductive hierarchy of algorithmic problems

    Representation of Uncertainty for Limit Processes

    Full text link
    Many mathematical models utilize limit processes. Continuous functions and the calculus, differential equations and topology, all are based on limits and continuity. However, when we perform measurements and computations, we can achieve only approximate results. In some cases, this discrepancy between theoretical schemes and practical actions changes drastically outcomes of a research and decision-making resulting in uncertainty of knowledge. In the paper, a mathematical approach to such kind of uncertainty, which emerges in computation and measurement, is suggested on the base of the concept of a fuzzy limit. A mathematical technique is developed for differential models with uncertainty. To take into account the intrinsic uncertainty of a model, it is suggested to use fuzzy derivatives instead of conventional derivatives of functions in this model

    Evolutionary Optimization in an Algorithmic Setting

    Full text link
    Evolutionary processes proved very useful for solving optimization problems. In this work, we build a formalization of the notion of cooperation and competition of multiple systems working toward a common optimization goal of the population using evolutionary computation techniques. It is justified that evolutionary algorithms are more expressive than conventional recursive algorithms. Three subclasses of evolutionary algorithms are proposed here: bounded finite, unbounded finite and infinite types. Some results on completeness, optimality and search decidability for the above classes are presented. A natural extension of Evolutionary Turing Machine model developed in this paper allows one to mathematically represent and study properties of cooperation and competition in a population of optimized species

    Fuzzy Statistical Limits

    Full text link
    Statistical limits are defined relaxing conditions on conventional convergence. The main idea of the statistical convergence of a sequence l is that the majority of elements from l converge and we do not care what is going on with other elements. At the same time, it is known that sequences that come from real life sources, such as measurement and computation, do not allow, in a general case, to test whether they converge or statistically converge in the strict mathematical sense. To overcome these limitations, fuzzy convergence was introduced earlier in the context of neoclassical analysis and fuzzy statistical convergence is introduced and studied in this paper. We find relations between fuzzy statistical convergence of a sequence and fuzzy statistical convergence of its subsequences (Theorem 2.1), as well as between fuzzy statistical convergence of a sequence and conventional convergence of its subsequences (Theorem 2.2). It is demonstrated what operations with fuzzy statistical limits are induced by operations on sequences (Theorem 2.3) and how fuzzy statistical limits of different sequences influence one another (Theorem 2.4). In Section 3, relations between fuzzy statistical convergence and fuzzy convergence of statistical characteristics, such as the mean (average) and standard deviation, are studied (Theorems 3.1 and 3.2)
    • …
    corecore