7 research outputs found

    Time-Scale Detection of Microemboli in Flowing Blood with Doppler Ultrasound

    No full text
    Small formed elements and gas bubbles in flowing blood, called microemboli, can be detected using Doppler ultrasound. In this application, a pulsed constant-frequency ultrasound signal insonates a volume of blood in the middle cerebral artery, and microemboli moving through its sample volume produce a Doppler-shifted transient reflection. Current detection methods include searching for these transients in a short-time Fourier transform (STFT) of the reflected signal. However, since the embolus transit time through the Doppler sample volume is inversely proportional to the embolus velocity (Doppler-shift frequency), a matched-filter detector should in principle use a wavelet transform, rather than a short-time Fourier transform, for optimal results. Closer examination of the Doppler shift signals usually shows a chirping behavior apparently due to acceleration or deceleration of the emboli during their transit through the Doppler sample volume. These variations imply that a linear wavel..

    Fifteen years of cold matter on the atom chip: promise, realizations, and prospects

    No full text

    Literaturverzeichnis

    No full text
    corecore