398 research outputs found
Mitigation of artifacts due to isolated acoustic heterogeneities in photoacoustic computed tomography using a variable data truncation-based reconstruction method
Photoacoustic computed tomography (PACT) is an emerging computed imaging
modality that exploits optical contrast and ultrasonic detection principles to
form images of the absorbed optical energy density within tissue. If the object
possesses spatially variant acoustic properties that are unaccounted for by the
reconstruction method, the estimated image can contain distortions. While
reconstruction methods have recently been developed to compensate for this
effect, they generally require the object's acoustic properties to be known a
priori. To circumvent the need for detailed information regarding an object's
acoustic properties, we previously proposed a half-time reconstruction method
for PACT. A half-time reconstruction method estimates the PACT image from a
data set that has been temporally truncated to exclude the data components that
have been strongly aberrated. However, this method can be improved upon when
the approximate sizes and locations of isolated heterogeneous structures, such
as bones or gas pockets, are known. To address this, we investigate PACT
reconstruction methods that are based on a variable data truncation (VDT)
approach. The VDT approach represents a generalization of the half-time
approach, in which the degree of temporal truncation for each measurement is
determined by the distance between the corresponding ultrasonic transducer
location and the nearest known bone or gas void location. Computer-simulated
and experimental data are employed to demonstrate the effectiveness of the
approach in mitigating artifacts due to acoustic heterogeneities
Discrete Imaging Models for Three-Dimensional Optoacoustic Tomography using Radially Symmetric Expansion Functions
Optoacoustic tomography (OAT), also known as photoacoustic tomography, is an
emerging computed biomedical imaging modality that exploits optical contrast
and ultrasonic detection principles. Iterative image reconstruction algorithms
that are based on discrete imaging models are actively being developed for OAT
due to their ability to improve image quality by incorporating accurate models
of the imaging physics, instrument response, and measurement noise. In this
work, we investigate the use of discrete imaging models based on Kaiser-Bessel
window functions for iterative image reconstruction in OAT. A closed-form
expression for the pressure produced by a Kaiser-Bessel function is calculated,
which facilitates accurate computation of the system matrix.
Computer-simulation and experimental studies are employed to demonstrate the
potential advantages of Kaiser-Bessel function-based iterative image
reconstruction in OAT
Image reconstruction in transcranial photoacoustic computed tomography of the brain
Photoacoustic computed tomography (PACT) holds great promise for transcranial brain imaging. However, the strong reflection, scattering, attenuation, and mode-conversion of photoacoustic waves in the skull pose serious challenges to establishing the method. The lack of an appropriate model of solid media in conventional PACT imaging models, which are based on the canonical scalar wave equation, causes a significant model mismatch in the presence of the skull and thus results in deteriorated reconstructed images. The goal of this study was to develop an image reconstruction algorithm that accurately models the skull and thereby ameliorates the quality of reconstructed images. The propagation of photoacoustic waves through the skull was modeled by a viscoelastic stress tensor wave equation, which was subsequently discretized by use of a staggered grid fourth-order finite-difference time-domain (FDTD) method. The matched adjoint of the FDTD-based wave propagation operator was derived for implementing a back-projection operator. Systematic computer simulations were conducted to demonstrate the effectiveness of the back-projection operator for reconstructing images in a realistic three-dimensional PACT brain imaging system. The results suggest that the proposed algorithm can successfully reconstruct images from transcranially-measured pressure data and readily be translated to clinical PACT brain imaging applications
Regularized Dual Averaging Image Reconstruction for Full-Wave Ultrasound Computed Tomography
Ultrasound computed tomography (USCT) holds great promise for breast cancer
screening. Waveform inversion-based image reconstruction methods account for
higher order diffraction effects and can produce high-resolution USCT images,
but are computationally demanding. Recently, a source encoding technique was
combined with stochastic gradient descent to greatly reduce image
reconstruction times. However, this method bundles the stochastic data fidelity
term with the deterministic regularization term. This limitation can be
overcome by replacing stochastic gradient descent (SGD) with a structured
optimization method, such as the regularized dual averaging (RDA) method, that
exploits knowledge of the composition of the cost function. In this work, the
dual averaging method is combined with source encoding techniques to improve
the effectiveness of regularization while maintaining the reduced
reconstruction times afforded by source encoding. It is demonstrated that each
iteration can be decomposed into a gradient descent step based on the data
fidelity term and a proximal update step corresponding to the regularization
term. Furthermore, the regularization term is never explicitly differentiated,
allowing non-smooth regularization penalties to be naturally incorporated. The
wave equation is solved by use of a time-domain method. The effectiveness of
this approach is demonstrated through computer-simulation and experimental
studies. The results suggest that the dual averaging method can produce images
with less noise and comparable resolution to those obtained by use of
stochastic gradient descent
- …
