398 research outputs found

    Mitigation of artifacts due to isolated acoustic heterogeneities in photoacoustic computed tomography using a variable data truncation-based reconstruction method

    Get PDF
    Photoacoustic computed tomography (PACT) is an emerging computed imaging modality that exploits optical contrast and ultrasonic detection principles to form images of the absorbed optical energy density within tissue. If the object possesses spatially variant acoustic properties that are unaccounted for by the reconstruction method, the estimated image can contain distortions. While reconstruction methods have recently been developed to compensate for this effect, they generally require the object's acoustic properties to be known a priori. To circumvent the need for detailed information regarding an object's acoustic properties, we previously proposed a half-time reconstruction method for PACT. A half-time reconstruction method estimates the PACT image from a data set that has been temporally truncated to exclude the data components that have been strongly aberrated. However, this method can be improved upon when the approximate sizes and locations of isolated heterogeneous structures, such as bones or gas pockets, are known. To address this, we investigate PACT reconstruction methods that are based on a variable data truncation (VDT) approach. The VDT approach represents a generalization of the half-time approach, in which the degree of temporal truncation for each measurement is determined by the distance between the corresponding ultrasonic transducer location and the nearest known bone or gas void location. Computer-simulated and experimental data are employed to demonstrate the effectiveness of the approach in mitigating artifacts due to acoustic heterogeneities

    Discrete Imaging Models for Three-Dimensional Optoacoustic Tomography using Radially Symmetric Expansion Functions

    Full text link
    Optoacoustic tomography (OAT), also known as photoacoustic tomography, is an emerging computed biomedical imaging modality that exploits optical contrast and ultrasonic detection principles. Iterative image reconstruction algorithms that are based on discrete imaging models are actively being developed for OAT due to their ability to improve image quality by incorporating accurate models of the imaging physics, instrument response, and measurement noise. In this work, we investigate the use of discrete imaging models based on Kaiser-Bessel window functions for iterative image reconstruction in OAT. A closed-form expression for the pressure produced by a Kaiser-Bessel function is calculated, which facilitates accurate computation of the system matrix. Computer-simulation and experimental studies are employed to demonstrate the potential advantages of Kaiser-Bessel function-based iterative image reconstruction in OAT

    Image reconstruction in transcranial photoacoustic computed tomography of the brain

    Get PDF
    Photoacoustic computed tomography (PACT) holds great promise for transcranial brain imaging. However, the strong reflection, scattering, attenuation, and mode-conversion of photoacoustic waves in the skull pose serious challenges to establishing the method. The lack of an appropriate model of solid media in conventional PACT imaging models, which are based on the canonical scalar wave equation, causes a significant model mismatch in the presence of the skull and thus results in deteriorated reconstructed images. The goal of this study was to develop an image reconstruction algorithm that accurately models the skull and thereby ameliorates the quality of reconstructed images. The propagation of photoacoustic waves through the skull was modeled by a viscoelastic stress tensor wave equation, which was subsequently discretized by use of a staggered grid fourth-order finite-difference time-domain (FDTD) method. The matched adjoint of the FDTD-based wave propagation operator was derived for implementing a back-projection operator. Systematic computer simulations were conducted to demonstrate the effectiveness of the back-projection operator for reconstructing images in a realistic three-dimensional PACT brain imaging system. The results suggest that the proposed algorithm can successfully reconstruct images from transcranially-measured pressure data and readily be translated to clinical PACT brain imaging applications

    Regularized Dual Averaging Image Reconstruction for Full-Wave Ultrasound Computed Tomography

    Full text link
    Ultrasound computed tomography (USCT) holds great promise for breast cancer screening. Waveform inversion-based image reconstruction methods account for higher order diffraction effects and can produce high-resolution USCT images, but are computationally demanding. Recently, a source encoding technique was combined with stochastic gradient descent to greatly reduce image reconstruction times. However, this method bundles the stochastic data fidelity term with the deterministic regularization term. This limitation can be overcome by replacing stochastic gradient descent (SGD) with a structured optimization method, such as the regularized dual averaging (RDA) method, that exploits knowledge of the composition of the cost function. In this work, the dual averaging method is combined with source encoding techniques to improve the effectiveness of regularization while maintaining the reduced reconstruction times afforded by source encoding. It is demonstrated that each iteration can be decomposed into a gradient descent step based on the data fidelity term and a proximal update step corresponding to the regularization term. Furthermore, the regularization term is never explicitly differentiated, allowing non-smooth regularization penalties to be naturally incorporated. The wave equation is solved by use of a time-domain method. The effectiveness of this approach is demonstrated through computer-simulation and experimental studies. The results suggest that the dual averaging method can produce images with less noise and comparable resolution to those obtained by use of stochastic gradient descent
    corecore