1,672 research outputs found

    In search of Robert Bruce, part I: craniofacial analysis of the skull excavated at Dunfermline in 1819

    Get PDF
    Robert Bruce, king of Scots, is a significant figure in Scottish history, and his facial appearance will have been key to his status, power and resilience as a leader. This paper is the first in a series that discusses the burial and skeletal remains excavated at Dunfermline in 1819. Parts II and III discuss the evidence relating to whether or not the burial vault and skeleton belong to Robert Bruce, and Part I analyses and interprets the historical records and skeletal structure in order to produce a depiction of the facial appearance of Robert Bruce

    The effects of mental fatigue on cricket-relevant performance among elite players

    Get PDF
    This study investigated the effects of a mentally fatiguing test on physical tasks among elite cricketers. In a cross-over design, 10 elite male cricket players from a professional club performed a cricket run-two test, a Batak Lite reaction time test and a Yo-Yo-Intermittent Recovery Level 1 (Yo-Yo-IR1) test, providing a rating of perceived exertion (RPE) after completing a 30-min Stroop test (mental fatigue condition) or 30-min control condition. Perceived fatigue was assessed before and after the two conditions and motivation was measured before testing. There were post-treatment differences in the perception of mental fatigue (P < 0.001; d = -7.82, 95% CIs = -9.05-6.66; most likely). Cricket run-two (P = 0.002; d = -0.51, 95% CIs = -0.72-0.30; very likely), Yo-Yo-IR1 distance (P = 0.023; d = 0.39, 95% CIs = 0.14-0.64; likely) and RPE (P = 0.001; d = -1.82, 95% CIs = -2.49-1.14; most likely) were negatively affected by mental fatigue. The Batak Lite test was not affected (P = 0.137), yet a moderate (d = 0.41, 95% CIs = -0.05-0.87) change was likely. Mental fatigue, induced by an app-based Stroop test, negatively affected cricket-relevant performance

    Identification of systemic immune response markers through metabolomic profiling of plasma from calves given an intra-nasally delivered respiratory vaccine

    Get PDF
    International audienceVaccination procedures within the cattle industry are important disease control tools to minimize economic and welfare burdens associated with respiratory pathogens. However, new vaccine, antigen and carrier technologies are required to combat emerging viral strains and enhance the efficacy of respiratory vaccines, particularly at the point of pathogen entry. New technologies, specifically metabolomic profiling, could be applied to identify metabolite immune-correlates representative of immune protection following vaccination aiding in the design and screening of vaccine candidates. This study for the first time demonstrates the ability of untargeted UPLC-MS metabolomic profiling to identify metabolite immune correlates characteristic of immune responses following mucosal vaccination in calves. Male Holstein Friesian calves were vaccinated with Pfizer Rispoval® PI3 + RSV intranasal vaccine and metabolomic profiling of post-vaccination plasma revealed 12 metabolites whose peak intensities differed significantly from controls. Plasma levels of glycocholic acid, N-[(3α,5β,12α)-3,12-Dihydroxy-7,24-dioxocholan-24-yl]glycine, uric acid and biliverdin were found to be significantly elevated in vaccinated animals following secondary vaccine administration, whereas hippuric acid significantly decreased. In contrast, significant upregulation of taurodeoxycholic acid and propionylcarnitine levels were confined to primary vaccine administration. Assessment of such metabolite markers may provide greater information on the immune pathways stimulated from vaccine formulations and benchmarking early metabolomic responses to highly immunogenic vaccine formulations could provide a means for rapidly assessing new vaccine formulations. Furthermore, the identification of metabolic systemic immune response markers which relate to specific cell signaling pathways of the immune system could allow for targeted vaccine design to stimulate key pathways which can be assessed at the metabolic level

    Red Galaxy Growth and the Halo Occupation Distribution

    Full text link
    We have traced the past 7 Gyr of red galaxy stellar mass growth within dark matter halos. We have determined the halo occupation distribution, which describes how galaxies reside within dark matter halos, using the observed luminosity function and clustering of 40,696 0.2<z<1.0 red galaxies in Bootes. Half of 10^{11.9} Msun/h halos host a red central galaxy, and this fraction increases with increasing halo mass. We do not observe any evolution of the relationship between red galaxy stellar mass and host halo mass, although we expect both galaxy stellar masses and halo masses to evolve over cosmic time. We find that the stellar mass contained within the red population has doubled since z=1, with the stellar mass within red satellite galaxies tripling over this redshift range. In cluster mass halos most of the stellar mass resides within satellite galaxies and the intra-cluster light, with a minority of the stellar mass residing within central galaxies. The stellar masses of the most luminous red central galaxies are proportional to halo mass to the power of a third. We thus conclude that halo mergers do not always lead to rapid growth of central galaxies. While very massive halos often double in mass over the past 7 Gyr, the stellar masses of their central galaxies typically grow by only 30%.Comment: Accepted for publication in the ApJ. 34 pages, 22 Figures, 5 Table
    • …
    corecore