21 research outputs found
Quaternary glacial history of the Mediterranean mountains
Glacial and periglacial landforms are widespread in the mountains of the Mediterranean region. The evidence for glacial and periglacial activity has been studied for over 120 years and it is possible to identify three phases of development in this area of research. First, a pioneer phase characterized by initial descriptive observations of glacial landforms; second, a mapping phase whereby the detailed distribution of glacial landforms and sediments have been depicted on geomorphological maps; and, third, an advanced phase characterized by detailed understanding of the geochronology of glacial sequences using radiometric dating alongside detailed sedimentological and stratigraphical analyses. It is only relatively recently that studies of glaciated mountain terrains in the Mediterranean region have reached an advanced phase and it is now clear from radiometric dating programmes that the Mediterranean mountains have been glaciated during multiple glacial cycles. The most extensive phases of glaciation appear to have occurred during the Middle Pleistocene. This represents a major shift from earlier work whereby many glacial sequences were assumed to have formed during the last cold stage. Glacial and periglacial deposits from multiple Quaternary cold stages constitute a valuable palaeoclimatic record. This is especially so in the Mediterranean mountains, since mountain glaciers in this latitudinal zone would have been particularly sensitive to changes in the global climate system. © 2006 Edward Arnold (Publishers) Ltd
Recommended from our members
Attribution: how is it relevant for loss and damage policy and practice?
Attribution has become a recurring issue in discussions about Loss and Damage (L&D). In this highly-politicised context, attribution is often associated with responsibility and blame; and linked to debates about liability and compensation. The aim of attribution science, however, is not to establish responsibility, but to further scientific understanding of causal links between elements of the Earth System and society. This research into causality could inform the management of climate-related risks through improved understanding of drivers of relevant hazards, or, more widely, vulnerability and exposure; with potential benefits regardless of political positions on L&D. Experience shows that it is nevertheless difficult to have open discussions about the science in the policy sphere. This is not only a missed opportunity, but also problematic in that it could inhibit understanding of scientific results and uncertainties, potentially leading to policy planning which does not have sufficient scientific evidence to support it. In this chapter, we first explore this dilemma for science-policy dialogue, summarising several years of research into stakeholder perspectives of attribution in the context of L&D. We then aim to provide clarity about the scientific research available, through an overview of research which might contribute evidence about the causal connections between anthropogenic climate change and losses and damages, including climate science, but also other fields which examine other drivers of hazard, exposure, and vulnerability. Finally, we explore potential applications of attribution research, suggesting that an integrated and nuanced approach has potential to inform planning to avert, minimise and address losses and damages. The key messages are
In the political context of climate negotiations, questions about whether losses and damages can be attributed to anthropogenic climate change are often linked to issues of responsibility, blame, and liability.
Attribution science does not aim to establish responsibility or blame, but rather to investigate drivers of change.
Attribution science is advancing rapidly, and has potential to increase understanding of how climate variability and change is influencing slow onset and extreme weather events, and how this interacts with other drivers of risk, including socio-economic drivers, to influence losses and damages.
Over time, some uncertainties in the science will be reduced, as the anthropogenic climate change signal becomes stronger, and understanding of climate variability and change develops.
However, some uncertainties will not be eliminated. Uncertainty is common in science, and does not prevent useful applications in policy, but might determine which applications are appropriate. It is important to highlight that in attribution studies, the strength of evidence varies substantially between different kinds of slow onset and extreme weather events, and between regions. Policy-makers should not expect the later emergence of conclusive evidence about the influence of climate variability and change on specific incidences of losses and damages; and, in particular, should not expect the strength of evidence to be equal between events, and between countries.
Rather than waiting for further confidence in attribution studies, there is potential to start working now to integrate science into policy and practice, to help understand and tackle drivers of losses and damages, informing prevention, recovery, rehabilitation, and transformation
Paleontological evidence of Paleogene transgression on Adriatic carbonate platform
Cosovic V., Aloncic D.B., Koic M., Marjanac T., Moro A., Gusic Ivan, Jelaska Vladimir. Paleontological evidence of Paleogene transgression on Adriatic carbonate platform. In: Géologie Méditerranéenne. Tome 21, numéro 3-4, 1994. Perimediterranean carbonate platforms. First International Meeting. Marseille – France (5-8 septembre 1994) sous la direction de Jean-Pierre Masse. pp. 49-53
Paleontological evidence of Paleogene transgression on Adriatic carbonate platform
Cosovic V., Aloncic D.B., Koic M., Marjanac T., Moro A., Gusic Ivan, Jelaska Vladimir. Paleontological evidence of Paleogene transgression on Adriatic carbonate platform. In: Géologie Méditerranéenne. Tome 21, numéro 3-4, 1994. Perimediterranean carbonate platforms. First International Meeting. Marseille – France (5-8 septembre 1994) sous la direction de Jean-Pierre Masse. pp. 49-53
Low-sea-level emplacement of a very large Late Pleistocene 'megaturbidite' in the western Mediterranean Sea
Large-volume turbidites, termed 'megaturbidites' or 'megabeds', result from catastrophic slope failures and the associated downslope transport of enormous quantities of sediment from continental margins to the deep sea. Such large sediment failures can generate tsunamis and, in terrains underlain by gas hydrates (clathrates), may be associated with the release of substantial amounts of the greenhouse gas methane. It has been proposed that the megaturbidite events may be triggered by seismic activity, or may result from gas hydrate release itself, caused by a lowering of hydrostatic pressure on clathrates as a result of low sea level. Previous conclusions on the significance of sea-level change, however, have been conditional because of the lack of absolute times of turbidite emplacement. Here we use accelerator-mass-spectrometry radiocarbon dating in five widely spaced cores to constrain the date of emplacement of a large-volume (500 km3) bed in the Balearic Basin of the western Mediterranean. This turbidite is exceptional in its magnitude and represents the main sedimentation event in the Balearic Basin over the past 100 kyr. Our data provide an estimate of 22,000 calendar years before present for emplacement of the megabed, a time when sea level stood at its lowest level during the Last Glacial Maximum. The coincidence of these dates is consistent with emplacement due to clathrate destabilization caused by low sea level, although other triggering mechanisms, such as seismic shock, cannot be ruled out